Magnetic order and magnetic anisotropy in two-dimensional ilmenenes
Iron ilmenene is a new two-dimensional material that has recently been exfoliated from the naturally occurring iron titanate found in ilmenite ore, a material that is abundant on the earth's surface. In this work, we theoretically investigate the structural, electronic and magnetic properties o...
Gespeichert in:
Veröffentlicht in: | Nanoscale advances 2023-05, Vol.5 (1), p.2813-2819 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron ilmenene is a new two-dimensional material that has recently been exfoliated from the naturally occurring iron titanate found in ilmenite ore, a material that is abundant on the earth's surface. In this work, we theoretically investigate the structural, electronic and magnetic properties of 2D transition-metal-based ilmenene-like titanates. The study of magnetic order reveals that these ilmenenes usually present intrinsic antiferromagnetic coupling between the 3d magnetic metals decorating both sides of the Ti-O layer. Furthermore, the ilmenenes based on late 3d brass metals, such as CuTiO
3
and ZnTiO
3
, become ferromagnetic and spin compensated, respectively. Our calculations which include spin-orbit coupling reveal that the magnetic ilmenenes have large magnetocrystalline anisotropy energies when the 3d shell departs from being either filled or half-filled, with their spin orientation being out-of-plane for elements below half-filling of 3d states and in-plane above. These interesting magnetic properties of ilmenenes make them useful for future spintronic applications because they could be synthesized as already realized in the iron case.
Iron ilmenene is a new two-dimensional material that has recently been exfoliated from the naturally occurring iron titanate found in ilmenite ore, a material that is abundant on the earth's surface. |
---|---|
ISSN: | 2516-0230 2516-0230 |
DOI: | 10.1039/d3na00134b |