Atrophic remodeling of the heart during vitamin D deficiency and insufficiency in a rat model
Vitamin D deficiency (VDD) is associated with skeletal muscle wasting and impaired cardiac function in humans and animals. However, the molecular events that cause cardiac dysfunction in VDD are poorly understood, and therefore, therapeutic approaches are limited. In the present study, we investigat...
Gespeichert in:
Veröffentlicht in: | The Journal of nutritional biochemistry 2023-09, Vol.119, p.109382-109382, Article 109382 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vitamin D deficiency (VDD) is associated with skeletal muscle wasting and impaired cardiac function in humans and animals. However, the molecular events that cause cardiac dysfunction in VDD are poorly understood, and therefore, therapeutic approaches are limited. In the present study, we investigated the effects of VDD on heart function with an emphasis on signaling pathways that regulate anabolism/catabolism in cardiac muscle. Vitamin D insufficiency and deficiency led to cardiac arrhythmia, a decrease in heart weight, and an increase in apoptosis and interstitial fibrosis. Ex-vivo cultures of atria revealed an increase in total protein degradation and a decrease in de-novo protein synthesis. The catalytic activities of the major proteolytic systems: ubiquitin-proteasome system, autophagy-lysosome, and calpains were upregulated in the heart of VDD and insufficient rats. In contrast, the mTOR pathway that regulates protein synthesis was suppressed. These catabolic events were exacerbated by a decrease in the expression of myosin heavy chain and troponin genes, as well as decreased expression and activities of metabolic enzymes. These latter changes occurred despite the activation of the energy sensor, AMPK. Our results provide, compelling evidence for cardiac atrophy in Vitamin D deficient rats. Unlike the skeletal muscle, the heart responded to VDD by activating all three proteolytic systems. |
---|---|
ISSN: | 0955-2863 1873-4847 |
DOI: | 10.1016/j.jnutbio.2023.109382 |