Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability
Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such co...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2300549 |
---|---|
container_issue | 37 |
container_start_page | e2300549 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Baraskar, Bharat G Kolekar, Yesappa D Thombare, Balu R James, Ajit R Kambale, Rahul C Ramana, C V |
description | Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba
Ca
Ti
Zr
O
-(x)Ba
Ca
Ti
Sn
O
, are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca
, Zr
, and Sn
are well dispersed within the BaTiO
lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T
), orthorhombic- tetragonal (T
), and tetragonal-cubic (T
), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε
≈ 1900-3300 (near room temperature), ε
≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P
≈ 9.4-14 µC cm
, coercive electric field E
≈ 2.5-3.6 kV cm
. Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d
≈ 296-360 pC N
, converse piezoelectric coefficient
≈ 240-340 pm V
, planar electromechanical coupling co |
doi_str_mv | 10.1002/smll.202300549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816760776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864080770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWqtXjxLwUsGtk2S7H0ctrQoFBevFy5LNTjRlP2qyrdY_4t91V9sinmbe4ZmXYV5CThj0GQC_dEWe9zlwATDw4x3SYQETXhDxeHfbMzggh87NAATjfrhPDkTIQQjwO-RrVL7KUmFGHwx-Vpijqq1RF3SM1v6Rsszo6EdVrp3UZon0wVZztLVBRytNJygzb2wRaY95H-fXw-ep12vr43SzqtDKwihH3039Skcl2pcVvZV2ia425QsdyrlMTW7q1RHZ0zJ3eLyuXfI0Hk2Ht97k_uZueDXxlOCi9rSv4pilHJCxNBvgADKBTGiIQaKAlOsow0jFgR9poRotFUTCZwNIw1hrEF3S-_Wd2-pt0ZyRFMYpzHNZYrVwCY9YEAYQhkGDnv1DZ9XCls11DRX4EDVUa9j_pVTzKWdRJ3NrCmlXCYOkjSxpI0u2kTULp2vbRVpgtsU3GYlvvKWScw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864080770</pqid></control><display><type>article</type><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><source>Wiley Online Library All Journals</source><creator>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</creator><creatorcontrib>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</creatorcontrib><description>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba
Ca
Ti
Zr
O
-(x)Ba
Ca
Ti
Sn
O
, are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca
, Zr
, and Sn
are well dispersed within the BaTiO
lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T
), orthorhombic- tetragonal (T
), and tetragonal-cubic (T
), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε
≈ 1900-3300 (near room temperature), ε
≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P
≈ 9.4-14 µC cm
, coercive electric field E
≈ 2.5-3.6 kV cm
. Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d
≈ 296-360 pC N
, converse piezoelectric coefficient
≈ 240-340 pm V
, planar electromechanical coupling coefficient k
≈ 0.34-0.45, and electrostrictive coefficient (Q
)
≈ 0.026-0.038 m
C
are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300549</identifier><identifier>PMID: 37203304</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; Calcium ions ; Ceramics ; Coercivity ; Coupling coefficients ; Curie temperature ; Dielectric loss ; Electric fields ; Electronics ; Electrostriction ; Energy ; Energy harvesting ; Energy technology ; Ferroelectric materials ; Ferroelectricity ; Lead ; Mechanical properties ; Nanotechnology ; Perovskite structure ; Perovskites ; Phase transitions ; Piezoelectricity ; Raman spectroscopy ; Room temperature ; Symmetry ; Temperature ; Temperature dependence ; X-ray diffraction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</citedby><cites>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</cites><orcidid>0000-0002-5286-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37203304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baraskar, Bharat G</creatorcontrib><creatorcontrib>Kolekar, Yesappa D</creatorcontrib><creatorcontrib>Thombare, Balu R</creatorcontrib><creatorcontrib>James, Ajit R</creatorcontrib><creatorcontrib>Kambale, Rahul C</creatorcontrib><creatorcontrib>Ramana, C V</creatorcontrib><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba
Ca
Ti
Zr
O
-(x)Ba
Ca
Ti
Sn
O
, are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca
, Zr
, and Sn
are well dispersed within the BaTiO
lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T
), orthorhombic- tetragonal (T
), and tetragonal-cubic (T
), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε
≈ 1900-3300 (near room temperature), ε
≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P
≈ 9.4-14 µC cm
, coercive electric field E
≈ 2.5-3.6 kV cm
. Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d
≈ 296-360 pC N
, converse piezoelectric coefficient
≈ 240-340 pm V
, planar electromechanical coupling coefficient k
≈ 0.34-0.45, and electrostrictive coefficient (Q
)
≈ 0.026-0.038 m
C
are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</description><subject>Barium titanates</subject><subject>Calcium ions</subject><subject>Ceramics</subject><subject>Coercivity</subject><subject>Coupling coefficients</subject><subject>Curie temperature</subject><subject>Dielectric loss</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Electrostriction</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Lead</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Piezoelectricity</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Symmetry</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMoWqtXjxLwUsGtk2S7H0ctrQoFBevFy5LNTjRlP2qyrdY_4t91V9sinmbe4ZmXYV5CThj0GQC_dEWe9zlwATDw4x3SYQETXhDxeHfbMzggh87NAATjfrhPDkTIQQjwO-RrVL7KUmFGHwx-Vpijqq1RF3SM1v6Rsszo6EdVrp3UZon0wVZztLVBRytNJygzb2wRaY95H-fXw-ep12vr43SzqtDKwihH3039Skcl2pcVvZV2ia425QsdyrlMTW7q1RHZ0zJ3eLyuXfI0Hk2Ht97k_uZueDXxlOCi9rSv4pilHJCxNBvgADKBTGiIQaKAlOsow0jFgR9poRotFUTCZwNIw1hrEF3S-_Wd2-pt0ZyRFMYpzHNZYrVwCY9YEAYQhkGDnv1DZ9XCls11DRX4EDVUa9j_pVTzKWdRJ3NrCmlXCYOkjSxpI0u2kTULp2vbRVpgtsU3GYlvvKWScw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Baraskar, Bharat G</creator><creator>Kolekar, Yesappa D</creator><creator>Thombare, Balu R</creator><creator>James, Ajit R</creator><creator>Kambale, Rahul C</creator><creator>Ramana, C V</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5286-3065</orcidid></search><sort><creationdate>20230901</creationdate><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><author>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>Calcium ions</topic><topic>Ceramics</topic><topic>Coercivity</topic><topic>Coupling coefficients</topic><topic>Curie temperature</topic><topic>Dielectric loss</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Electrostriction</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Lead</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Piezoelectricity</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Symmetry</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraskar, Bharat G</creatorcontrib><creatorcontrib>Kolekar, Yesappa D</creatorcontrib><creatorcontrib>Thombare, Balu R</creatorcontrib><creatorcontrib>James, Ajit R</creatorcontrib><creatorcontrib>Kambale, Rahul C</creatorcontrib><creatorcontrib>Ramana, C V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baraskar, Bharat G</au><au>Kolekar, Yesappa D</au><au>Thombare, Balu R</au><au>James, Ajit R</au><au>Kambale, Rahul C</au><au>Ramana, C V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>37</issue><spage>e2300549</spage><epage>e2300549</epage><pages>e2300549-e2300549</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba
Ca
Ti
Zr
O
-(x)Ba
Ca
Ti
Sn
O
, are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca
, Zr
, and Sn
are well dispersed within the BaTiO
lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T
), orthorhombic- tetragonal (T
), and tetragonal-cubic (T
), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε
≈ 1900-3300 (near room temperature), ε
≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P
≈ 9.4-14 µC cm
, coercive electric field E
≈ 2.5-3.6 kV cm
. Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d
≈ 296-360 pC N
, converse piezoelectric coefficient
≈ 240-340 pm V
, planar electromechanical coupling coefficient k
≈ 0.34-0.45, and electrostrictive coefficient (Q
)
≈ 0.026-0.038 m
C
are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37203304</pmid><doi>10.1002/smll.202300549</doi><orcidid>https://orcid.org/0000-0002-5286-3065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2816760776 |
source | Wiley Online Library All Journals |
subjects | Barium titanates Calcium ions Ceramics Coercivity Coupling coefficients Curie temperature Dielectric loss Electric fields Electronics Electrostriction Energy Energy harvesting Energy technology Ferroelectric materials Ferroelectricity Lead Mechanical properties Nanotechnology Perovskite structure Perovskites Phase transitions Piezoelectricity Raman spectroscopy Room temperature Symmetry Temperature Temperature dependence X-ray diffraction |
title | Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Piezoelectric,%20Ferroelectric,%20and%20Electrostrictive%20Properties%20of%20Lead-Free%20(1-x)BCZT-(x)BCST%20Electroceramics%20with%20Energy%20Harvesting%20Capability&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Baraskar,%20Bharat%20G&rft.date=2023-09-01&rft.volume=19&rft.issue=37&rft.spage=e2300549&rft.epage=e2300549&rft.pages=e2300549-e2300549&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300549&rft_dat=%3Cproquest_cross%3E2864080770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864080770&rft_id=info:pmid/37203304&rfr_iscdi=true |