Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability

Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549
Hauptverfasser: Baraskar, Bharat G, Kolekar, Yesappa D, Thombare, Balu R, James, Ajit R, Kambale, Rahul C, Ramana, C V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2300549
container_issue 37
container_start_page e2300549
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Baraskar, Bharat G
Kolekar, Yesappa D
Thombare, Balu R
James, Ajit R
Kambale, Rahul C
Ramana, C V
description Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba Ca Ti Zr O -(x)Ba Ca Ti Sn O , are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca , Zr , and Sn are well dispersed within the BaTiO lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T ), orthorhombic- tetragonal (T ), and tetragonal-cubic (T ), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε ≈ 1900-3300 (near room temperature), ε ≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P ≈ 9.4-14 µC cm , coercive electric field E ≈ 2.5-3.6 kV cm . Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d ≈ 296-360 pC N , converse piezoelectric coefficient ≈ 240-340 pm V , planar electromechanical coupling co
doi_str_mv 10.1002/smll.202300549
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816760776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864080770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWqtXjxLwUsGtk2S7H0ctrQoFBevFy5LNTjRlP2qyrdY_4t91V9sinmbe4ZmXYV5CThj0GQC_dEWe9zlwATDw4x3SYQETXhDxeHfbMzggh87NAATjfrhPDkTIQQjwO-RrVL7KUmFGHwx-Vpijqq1RF3SM1v6Rsszo6EdVrp3UZon0wVZztLVBRytNJygzb2wRaY95H-fXw-ep12vr43SzqtDKwihH3039Skcl2pcVvZV2ia425QsdyrlMTW7q1RHZ0zJ3eLyuXfI0Hk2Ht97k_uZueDXxlOCi9rSv4pilHJCxNBvgADKBTGiIQaKAlOsow0jFgR9poRotFUTCZwNIw1hrEF3S-_Wd2-pt0ZyRFMYpzHNZYrVwCY9YEAYQhkGDnv1DZ9XCls11DRX4EDVUa9j_pVTzKWdRJ3NrCmlXCYOkjSxpI0u2kTULp2vbRVpgtsU3GYlvvKWScw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864080770</pqid></control><display><type>article</type><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><source>Wiley Online Library All Journals</source><creator>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</creator><creatorcontrib>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</creatorcontrib><description>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba Ca Ti Zr O -(x)Ba Ca Ti Sn O , are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca , Zr , and Sn are well dispersed within the BaTiO lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T ), orthorhombic- tetragonal (T ), and tetragonal-cubic (T ), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε ≈ 1900-3300 (near room temperature), ε ≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P ≈ 9.4-14 µC cm , coercive electric field E ≈ 2.5-3.6 kV cm . Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d ≈ 296-360 pC N , converse piezoelectric coefficient ≈ 240-340 pm V , planar electromechanical coupling coefficient k ≈ 0.34-0.45, and electrostrictive coefficient (Q ) ≈ 0.026-0.038 m C are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202300549</identifier><identifier>PMID: 37203304</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; Calcium ions ; Ceramics ; Coercivity ; Coupling coefficients ; Curie temperature ; Dielectric loss ; Electric fields ; Electronics ; Electrostriction ; Energy ; Energy harvesting ; Energy technology ; Ferroelectric materials ; Ferroelectricity ; Lead ; Mechanical properties ; Nanotechnology ; Perovskite structure ; Perovskites ; Phase transitions ; Piezoelectricity ; Raman spectroscopy ; Room temperature ; Symmetry ; Temperature ; Temperature dependence ; X-ray diffraction</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</citedby><cites>FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</cites><orcidid>0000-0002-5286-3065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37203304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baraskar, Bharat G</creatorcontrib><creatorcontrib>Kolekar, Yesappa D</creatorcontrib><creatorcontrib>Thombare, Balu R</creatorcontrib><creatorcontrib>James, Ajit R</creatorcontrib><creatorcontrib>Kambale, Rahul C</creatorcontrib><creatorcontrib>Ramana, C V</creatorcontrib><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba Ca Ti Zr O -(x)Ba Ca Ti Sn O , are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca , Zr , and Sn are well dispersed within the BaTiO lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T ), orthorhombic- tetragonal (T ), and tetragonal-cubic (T ), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε ≈ 1900-3300 (near room temperature), ε ≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P ≈ 9.4-14 µC cm , coercive electric field E ≈ 2.5-3.6 kV cm . Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d ≈ 296-360 pC N , converse piezoelectric coefficient ≈ 240-340 pm V , planar electromechanical coupling coefficient k ≈ 0.34-0.45, and electrostrictive coefficient (Q ) ≈ 0.026-0.038 m C are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</description><subject>Barium titanates</subject><subject>Calcium ions</subject><subject>Ceramics</subject><subject>Coercivity</subject><subject>Coupling coefficients</subject><subject>Curie temperature</subject><subject>Dielectric loss</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Electrostriction</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Lead</subject><subject>Mechanical properties</subject><subject>Nanotechnology</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Piezoelectricity</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Symmetry</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>X-ray diffraction</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMoWqtXjxLwUsGtk2S7H0ctrQoFBevFy5LNTjRlP2qyrdY_4t91V9sinmbe4ZmXYV5CThj0GQC_dEWe9zlwATDw4x3SYQETXhDxeHfbMzggh87NAATjfrhPDkTIQQjwO-RrVL7KUmFGHwx-Vpijqq1RF3SM1v6Rsszo6EdVrp3UZon0wVZztLVBRytNJygzb2wRaY95H-fXw-ep12vr43SzqtDKwihH3039Skcl2pcVvZV2ia425QsdyrlMTW7q1RHZ0zJ3eLyuXfI0Hk2Ht97k_uZueDXxlOCi9rSv4pilHJCxNBvgADKBTGiIQaKAlOsow0jFgR9poRotFUTCZwNIw1hrEF3S-_Wd2-pt0ZyRFMYpzHNZYrVwCY9YEAYQhkGDnv1DZ9XCls11DRX4EDVUa9j_pVTzKWdRJ3NrCmlXCYOkjSxpI0u2kTULp2vbRVpgtsU3GYlvvKWScw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Baraskar, Bharat G</creator><creator>Kolekar, Yesappa D</creator><creator>Thombare, Balu R</creator><creator>James, Ajit R</creator><creator>Kambale, Rahul C</creator><creator>Ramana, C V</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5286-3065</orcidid></search><sort><creationdate>20230901</creationdate><title>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</title><author>Baraskar, Bharat G ; Kolekar, Yesappa D ; Thombare, Balu R ; James, Ajit R ; Kambale, Rahul C ; Ramana, C V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-f4c991b20e11bd5e50d3e13f090ae30b2f8de8c9648f3c0b2ac0834150b79ff03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Barium titanates</topic><topic>Calcium ions</topic><topic>Ceramics</topic><topic>Coercivity</topic><topic>Coupling coefficients</topic><topic>Curie temperature</topic><topic>Dielectric loss</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Electrostriction</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Lead</topic><topic>Mechanical properties</topic><topic>Nanotechnology</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Piezoelectricity</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Symmetry</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraskar, Bharat G</creatorcontrib><creatorcontrib>Kolekar, Yesappa D</creatorcontrib><creatorcontrib>Thombare, Balu R</creatorcontrib><creatorcontrib>James, Ajit R</creatorcontrib><creatorcontrib>Kambale, Rahul C</creatorcontrib><creatorcontrib>Ramana, C V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baraskar, Bharat G</au><au>Kolekar, Yesappa D</au><au>Thombare, Balu R</au><au>James, Ajit R</au><au>Kambale, Rahul C</au><au>Ramana, C V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>37</issue><spage>e2300549</spage><epage>e2300549</epage><pages>e2300549-e2300549</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Next-generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)-free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials' design with multi-phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead-free piezoelectric materials (1-x)Ba Ca Ti Zr O -(x)Ba Ca Ti Sn O , are reported, which are represented as (1-x)BCZT-(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1-x)BCZT-(x)BCST materials are synthesized by high-temperature solid-state ceramic reaction method by varying x in the full range (x = 0.00-1.00). In-depth exploration research is performed on the structural, dielectric, ferroelectric, and electro-mechanical properties of (1-x)BCZT-(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X-ray diffraction (XRD) analyses, which also reveals that the Ca , Zr , and Sn are well dispersed within the BaTiO lattice. For all (1-x)BCZT-(x)BCST ceramics, thorough investigation of phase formation and phase-stability using XRD, Rietveld refinement, Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and temperature-dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2 + P4mm) phases at room temperature. The steady transition of Amm2 crystal symmetry to P4mm crystal symmetry with increasing x content is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral-orthorhombic (T ), orthorhombic- tetragonal (T ), and tetragonal-cubic (T ), gradually shift toward lower temperature with increasing x content. For (1-x)BCZT-(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constant ε ≈ 1900-3300 (near room temperature), ε ≈ 8800-12 900 (near Curie temperature), dielectric loss, tan δ ≈ 0.01-0.02, remanent polarization P ≈ 9.4-14 µC cm , coercive electric field E ≈ 2.5-3.6 kV cm . Further, high electric field-induced strain S ≈ 0.12-0.175%, piezoelectric charge coefficient d ≈ 296-360 pC N , converse piezoelectric coefficient ≈ 240-340 pm V , planar electromechanical coupling coefficient k ≈ 0.34-0.45, and electrostrictive coefficient (Q ) ≈ 0.026-0.038 m C are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT-(0.4)BCST composition (x = 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead-free piezoelectric (1-x)BCZT-(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1-x)BCZT-(x)BCST ceramics as a potentially strong contender within the family of Pb-free piezoelectric materials for future electronics and energy harvesting device technologies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37203304</pmid><doi>10.1002/smll.202300549</doi><orcidid>https://orcid.org/0000-0002-5286-3065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2300549-e2300549
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2816760776
source Wiley Online Library All Journals
subjects Barium titanates
Calcium ions
Ceramics
Coercivity
Coupling coefficients
Curie temperature
Dielectric loss
Electric fields
Electronics
Electrostriction
Energy
Energy harvesting
Energy technology
Ferroelectric materials
Ferroelectricity
Lead
Mechanical properties
Nanotechnology
Perovskite structure
Perovskites
Phase transitions
Piezoelectricity
Raman spectroscopy
Room temperature
Symmetry
Temperature
Temperature dependence
X-ray diffraction
title Enhanced Piezoelectric, Ferroelectric, and Electrostrictive Properties of Lead-Free (1-x)BCZT-(x)BCST Electroceramics with Energy Harvesting Capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Piezoelectric,%20Ferroelectric,%20and%20Electrostrictive%20Properties%20of%20Lead-Free%20(1-x)BCZT-(x)BCST%20Electroceramics%20with%20Energy%20Harvesting%20Capability&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Baraskar,%20Bharat%20G&rft.date=2023-09-01&rft.volume=19&rft.issue=37&rft.spage=e2300549&rft.epage=e2300549&rft.pages=e2300549-e2300549&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202300549&rft_dat=%3Cproquest_cross%3E2864080770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864080770&rft_id=info:pmid/37203304&rfr_iscdi=true