A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes

Purpose To develop and validate a model to estimate glycated haemoglobin (HbA1c) values in patients with type 2 diabetes mellitus (T2DM) using a clinical data source, with the aim to apply this equation to administrative databases. Methods Using a primary care and administrative Italian databases, n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacoepidemiology and drug safety 2023-10, Vol.32 (10), p.1083-1092
Hauptverfasser: Lapi, Francesco, Bianchini, Elisa, Marconi, Ettore, Medea, Gerardo, Piccinni, Carlo, Maggioni, Aldo P., Dondi, Letizia, Pedrini, Antonella, Martini, Nello, Cricelli, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1092
container_issue 10
container_start_page 1083
container_title Pharmacoepidemiology and drug safety
container_volume 32
creator Lapi, Francesco
Bianchini, Elisa
Marconi, Ettore
Medea, Gerardo
Piccinni, Carlo
Maggioni, Aldo P.
Dondi, Letizia
Pedrini, Antonella
Martini, Nello
Cricelli, Claudio
description Purpose To develop and validate a model to estimate glycated haemoglobin (HbA1c) values in patients with type 2 diabetes mellitus (T2DM) using a clinical data source, with the aim to apply this equation to administrative databases. Methods Using a primary care and administrative Italian databases, namely the Health Search database (HSD) and the ReS (Ricerca e Salute) database, we selected all patients aged 18 years or older on 31 December 2018 being diagnosed with T2DM and without prior prescription of sodium‐glucose cotransporter‐2 (SGLT‐2) inhibitors. We included patients prescribed with and adherent to metformin. HSD was used to develop and test (using 2019 data as well) the algorithm imputing HbA1c values ≥7% according to a series of covariates. The algorithm was gathered by combining beta‐coefficients being estimated by logistic regression models using complete case (excluding missing values) and imputed (after multiple imputation) dataset. The final algorithm was applied to ReS database using the same covariates. Results The tested algorithms were able to explain 17%–18% variation in assessing HbA1c values. Good discrimination (70%) and calibration were obtained as well. The best algorithm (three) cut‐offs, namely those providing correct classifications ranging 66%–70% was therefore calculated and applied to ReS database. By doing so, from 52 999 (27.9, 95% CI: 27.7%–28.1%) to 74 250 (40.1%, 95% CI: 38.9%–39.3%) patients were estimated with HbA1c ≥7%. Conclusion Through this methodology, healthcare authorities should be able to quantify the population eligible to a new licensed medication, such as SGLT‐2 inhibitors, and to simulate scenarios to assess reimbursement criteria according to precise estimates.
doi_str_mv 10.1002/pds.5641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816758809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2860437525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3101-f828be4e0bf447b2c5802854cf0c1ef856c883b792722e785fe856ff98bb76093</originalsourceid><addsrcrecordid>eNp1kV9r1jAUh4sobk7BTyAHvPGmM0mbNvVuzPkHBgrO65KkJ--bkTa1aZ3d9_T7eN5uKghCIMk5D0_C72TZc85OOWPi9dilU1mV_EF2zFnT5FzK-uHhLItcyao5yp6kdM0Y9ZrycXZU1IIpVYrj7OcZ9DjvYxdD3K0wR9ApYUow7xHGOC5Bzz4OkPwtgh46wDT7Xs-4AQNihx1MmOIyWUzg4kTFGwje4pCo1WPn7aZIYFawsTd-8MMObKDd6rBJddfTLc0Tkd8ROj1ro-kbb-CKXsEfuh8DQnSwCyvZyLvX2MddiGQDWvM6IgjovDY4Y3qaPXI6JHx2v59kX99dXJ1_yC8_vf94fnaZ24IznjsllMESmXFlWRthpWJCydI6Zjk6Ss4qVZi6EbUQWCvpkGrONcqYumJNcZK9uvOOU_y2UDRt75PFEPSAcUmtULyqpVIb-vIf9JoyG-h3RFWsLGop5F-hnWJKE7p2nCjuaW05aw-jbmnU7WHUhL64Fy6GUv4D_p4tAfkdcOMDrv8VtZ_fftmEvwB0P7a3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860437525</pqid></control><display><type>article</type><title>A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lapi, Francesco ; Bianchini, Elisa ; Marconi, Ettore ; Medea, Gerardo ; Piccinni, Carlo ; Maggioni, Aldo P. ; Dondi, Letizia ; Pedrini, Antonella ; Martini, Nello ; Cricelli, Claudio</creator><creatorcontrib>Lapi, Francesco ; Bianchini, Elisa ; Marconi, Ettore ; Medea, Gerardo ; Piccinni, Carlo ; Maggioni, Aldo P. ; Dondi, Letizia ; Pedrini, Antonella ; Martini, Nello ; Cricelli, Claudio</creatorcontrib><description>Purpose To develop and validate a model to estimate glycated haemoglobin (HbA1c) values in patients with type 2 diabetes mellitus (T2DM) using a clinical data source, with the aim to apply this equation to administrative databases. Methods Using a primary care and administrative Italian databases, namely the Health Search database (HSD) and the ReS (Ricerca e Salute) database, we selected all patients aged 18 years or older on 31 December 2018 being diagnosed with T2DM and without prior prescription of sodium‐glucose cotransporter‐2 (SGLT‐2) inhibitors. We included patients prescribed with and adherent to metformin. HSD was used to develop and test (using 2019 data as well) the algorithm imputing HbA1c values ≥7% according to a series of covariates. The algorithm was gathered by combining beta‐coefficients being estimated by logistic regression models using complete case (excluding missing values) and imputed (after multiple imputation) dataset. The final algorithm was applied to ReS database using the same covariates. Results The tested algorithms were able to explain 17%–18% variation in assessing HbA1c values. Good discrimination (70%) and calibration were obtained as well. The best algorithm (three) cut‐offs, namely those providing correct classifications ranging 66%–70% was therefore calculated and applied to ReS database. By doing so, from 52 999 (27.9, 95% CI: 27.7%–28.1%) to 74 250 (40.1%, 95% CI: 38.9%–39.3%) patients were estimated with HbA1c ≥7%. Conclusion Through this methodology, healthcare authorities should be able to quantify the population eligible to a new licensed medication, such as SGLT‐2 inhibitors, and to simulate scenarios to assess reimbursement criteria according to precise estimates.</description><identifier>ISSN: 1053-8569</identifier><identifier>EISSN: 1099-1557</identifier><identifier>DOI: 10.1002/pds.5641</identifier><identifier>PMID: 37208842</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>administrative healthcare database ; Algorithms ; clinical database ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; glycated haemoglobin ; Hemoglobin ; imputation model ; Metformin ; Patients ; Primary care ; Regression analysis ; Sodium-glucose cotransporter ; type 2 diabetes mellitus</subject><ispartof>Pharmacoepidemiology and drug safety, 2023-10, Vol.32 (10), p.1083-1092</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3101-f828be4e0bf447b2c5802854cf0c1ef856c883b792722e785fe856ff98bb76093</cites><orcidid>0000-0002-4342-9128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpds.5641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpds.5641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37208842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapi, Francesco</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Medea, Gerardo</creatorcontrib><creatorcontrib>Piccinni, Carlo</creatorcontrib><creatorcontrib>Maggioni, Aldo P.</creatorcontrib><creatorcontrib>Dondi, Letizia</creatorcontrib><creatorcontrib>Pedrini, Antonella</creatorcontrib><creatorcontrib>Martini, Nello</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><title>A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes</title><title>Pharmacoepidemiology and drug safety</title><addtitle>Pharmacoepidemiol Drug Saf</addtitle><description>Purpose To develop and validate a model to estimate glycated haemoglobin (HbA1c) values in patients with type 2 diabetes mellitus (T2DM) using a clinical data source, with the aim to apply this equation to administrative databases. Methods Using a primary care and administrative Italian databases, namely the Health Search database (HSD) and the ReS (Ricerca e Salute) database, we selected all patients aged 18 years or older on 31 December 2018 being diagnosed with T2DM and without prior prescription of sodium‐glucose cotransporter‐2 (SGLT‐2) inhibitors. We included patients prescribed with and adherent to metformin. HSD was used to develop and test (using 2019 data as well) the algorithm imputing HbA1c values ≥7% according to a series of covariates. The algorithm was gathered by combining beta‐coefficients being estimated by logistic regression models using complete case (excluding missing values) and imputed (after multiple imputation) dataset. The final algorithm was applied to ReS database using the same covariates. Results The tested algorithms were able to explain 17%–18% variation in assessing HbA1c values. Good discrimination (70%) and calibration were obtained as well. The best algorithm (three) cut‐offs, namely those providing correct classifications ranging 66%–70% was therefore calculated and applied to ReS database. By doing so, from 52 999 (27.9, 95% CI: 27.7%–28.1%) to 74 250 (40.1%, 95% CI: 38.9%–39.3%) patients were estimated with HbA1c ≥7%. Conclusion Through this methodology, healthcare authorities should be able to quantify the population eligible to a new licensed medication, such as SGLT‐2 inhibitors, and to simulate scenarios to assess reimbursement criteria according to precise estimates.</description><subject>administrative healthcare database</subject><subject>Algorithms</subject><subject>clinical database</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>glycated haemoglobin</subject><subject>Hemoglobin</subject><subject>imputation model</subject><subject>Metformin</subject><subject>Patients</subject><subject>Primary care</subject><subject>Regression analysis</subject><subject>Sodium-glucose cotransporter</subject><subject>type 2 diabetes mellitus</subject><issn>1053-8569</issn><issn>1099-1557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kV9r1jAUh4sobk7BTyAHvPGmM0mbNvVuzPkHBgrO65KkJ--bkTa1aZ3d9_T7eN5uKghCIMk5D0_C72TZc85OOWPi9dilU1mV_EF2zFnT5FzK-uHhLItcyao5yp6kdM0Y9ZrycXZU1IIpVYrj7OcZ9DjvYxdD3K0wR9ApYUow7xHGOC5Bzz4OkPwtgh46wDT7Xs-4AQNihx1MmOIyWUzg4kTFGwje4pCo1WPn7aZIYFawsTd-8MMObKDd6rBJddfTLc0Tkd8ROj1ro-kbb-CKXsEfuh8DQnSwCyvZyLvX2MddiGQDWvM6IgjovDY4Y3qaPXI6JHx2v59kX99dXJ1_yC8_vf94fnaZ24IznjsllMESmXFlWRthpWJCydI6Zjk6Ss4qVZi6EbUQWCvpkGrONcqYumJNcZK9uvOOU_y2UDRt75PFEPSAcUmtULyqpVIb-vIf9JoyG-h3RFWsLGop5F-hnWJKE7p2nCjuaW05aw-jbmnU7WHUhL64Fy6GUv4D_p4tAfkdcOMDrv8VtZ_fftmEvwB0P7a3</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Lapi, Francesco</creator><creator>Bianchini, Elisa</creator><creator>Marconi, Ettore</creator><creator>Medea, Gerardo</creator><creator>Piccinni, Carlo</creator><creator>Maggioni, Aldo P.</creator><creator>Dondi, Letizia</creator><creator>Pedrini, Antonella</creator><creator>Martini, Nello</creator><creator>Cricelli, Claudio</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></search><sort><creationdate>202310</creationdate><title>A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes</title><author>Lapi, Francesco ; Bianchini, Elisa ; Marconi, Ettore ; Medea, Gerardo ; Piccinni, Carlo ; Maggioni, Aldo P. ; Dondi, Letizia ; Pedrini, Antonella ; Martini, Nello ; Cricelli, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3101-f828be4e0bf447b2c5802854cf0c1ef856c883b792722e785fe856ff98bb76093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>administrative healthcare database</topic><topic>Algorithms</topic><topic>clinical database</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>glycated haemoglobin</topic><topic>Hemoglobin</topic><topic>imputation model</topic><topic>Metformin</topic><topic>Patients</topic><topic>Primary care</topic><topic>Regression analysis</topic><topic>Sodium-glucose cotransporter</topic><topic>type 2 diabetes mellitus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapi, Francesco</creatorcontrib><creatorcontrib>Bianchini, Elisa</creatorcontrib><creatorcontrib>Marconi, Ettore</creatorcontrib><creatorcontrib>Medea, Gerardo</creatorcontrib><creatorcontrib>Piccinni, Carlo</creatorcontrib><creatorcontrib>Maggioni, Aldo P.</creatorcontrib><creatorcontrib>Dondi, Letizia</creatorcontrib><creatorcontrib>Pedrini, Antonella</creatorcontrib><creatorcontrib>Martini, Nello</creatorcontrib><creatorcontrib>Cricelli, Claudio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmacoepidemiology and drug safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapi, Francesco</au><au>Bianchini, Elisa</au><au>Marconi, Ettore</au><au>Medea, Gerardo</au><au>Piccinni, Carlo</au><au>Maggioni, Aldo P.</au><au>Dondi, Letizia</au><au>Pedrini, Antonella</au><au>Martini, Nello</au><au>Cricelli, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes</atitle><jtitle>Pharmacoepidemiology and drug safety</jtitle><addtitle>Pharmacoepidemiol Drug Saf</addtitle><date>2023-10</date><risdate>2023</risdate><volume>32</volume><issue>10</issue><spage>1083</spage><epage>1092</epage><pages>1083-1092</pages><issn>1053-8569</issn><eissn>1099-1557</eissn><abstract>Purpose To develop and validate a model to estimate glycated haemoglobin (HbA1c) values in patients with type 2 diabetes mellitus (T2DM) using a clinical data source, with the aim to apply this equation to administrative databases. Methods Using a primary care and administrative Italian databases, namely the Health Search database (HSD) and the ReS (Ricerca e Salute) database, we selected all patients aged 18 years or older on 31 December 2018 being diagnosed with T2DM and without prior prescription of sodium‐glucose cotransporter‐2 (SGLT‐2) inhibitors. We included patients prescribed with and adherent to metformin. HSD was used to develop and test (using 2019 data as well) the algorithm imputing HbA1c values ≥7% according to a series of covariates. The algorithm was gathered by combining beta‐coefficients being estimated by logistic regression models using complete case (excluding missing values) and imputed (after multiple imputation) dataset. The final algorithm was applied to ReS database using the same covariates. Results The tested algorithms were able to explain 17%–18% variation in assessing HbA1c values. Good discrimination (70%) and calibration were obtained as well. The best algorithm (three) cut‐offs, namely those providing correct classifications ranging 66%–70% was therefore calculated and applied to ReS database. By doing so, from 52 999 (27.9, 95% CI: 27.7%–28.1%) to 74 250 (40.1%, 95% CI: 38.9%–39.3%) patients were estimated with HbA1c ≥7%. Conclusion Through this methodology, healthcare authorities should be able to quantify the population eligible to a new licensed medication, such as SGLT‐2 inhibitors, and to simulate scenarios to assess reimbursement criteria according to precise estimates.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37208842</pmid><doi>10.1002/pds.5641</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4342-9128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-8569
ispartof Pharmacoepidemiology and drug safety, 2023-10, Vol.32 (10), p.1083-1092
issn 1053-8569
1099-1557
language eng
recordid cdi_proquest_miscellaneous_2816758809
source Wiley Online Library Journals Frontfile Complete
subjects administrative healthcare database
Algorithms
clinical database
Diabetes
Diabetes mellitus (non-insulin dependent)
glycated haemoglobin
Hemoglobin
imputation model
Metformin
Patients
Primary care
Regression analysis
Sodium-glucose cotransporter
type 2 diabetes mellitus
title A methodology to assess the population size and estimate the needed resources for new licensed medications by combining clinical and administrative databases: The example of glycated haemoglobin in type 2 diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20to%20assess%20the%20population%20size%20and%20estimate%20the%20needed%20resources%20for%20new%20licensed%20medications%20by%20combining%20clinical%20and%20administrative%20databases:%20The%20example%20of%20glycated%20haemoglobin%20in%20type%202%20diabetes&rft.jtitle=Pharmacoepidemiology%20and%20drug%20safety&rft.au=Lapi,%20Francesco&rft.date=2023-10&rft.volume=32&rft.issue=10&rft.spage=1083&rft.epage=1092&rft.pages=1083-1092&rft.issn=1053-8569&rft.eissn=1099-1557&rft_id=info:doi/10.1002/pds.5641&rft_dat=%3Cproquest_cross%3E2860437525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860437525&rft_id=info:pmid/37208842&rfr_iscdi=true