Exploring activity landscapes with extended similarity: is Tanimoto enough?
Understanding structure‐activity landscapes is essential in drug discovery. Similarly, it has been shown that the presence of activity cliffs in compound data sets can have a substantial impact not only on the design progress but also can influence the predictive ability of machine learning models....
Gespeichert in:
Veröffentlicht in: | Molecular informatics 2023-07, Vol.42 (7), p.e2300056-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!