Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events
Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk ass...
Gespeichert in:
Veröffentlicht in: | JACC. Cardiovascular imaging 2023-10, Vol.16 (10), p.1271-1284 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1284 |
---|---|
container_issue | 10 |
container_start_page | 1271 |
container_title | JACC. Cardiovascular imaging |
container_volume | 16 |
creator | Huttin, Olivier Girerd, Nicolas Jobbe-Duval, Antoine Constant Dit Beaufils, Anne-Laure Senage, Thomas Filippetti, Laura Cueff, Caroline Duarte, Kevin Fraix, Antoine Piriou, Nicolas Mandry, Damien Pace, Nathalie Le Scouarnec, Solena Capoulade, Romain Echivard, Matthieu Sellal, Jean Marc Marrec, Marie Beaumont, Marine Hossu, Gabriella Trochu, Jean-Noel Sadoul, Nicolas Marie, Pierre-Yves Guenancia, Charles Schott, Jean-Jacques Roussel, Jean-Christian Serfaty, Jean-Michel Selton-Suty, Christine Le Tourneau, Thierry |
description | Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment.
This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis.
Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes.
Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain 42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles.
Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
[Display omitted] |
doi_str_mv | 10.1016/j.jcmg.2023.03.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816757855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936878X23001523</els_id><sourcerecordid>2816757855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</originalsourceid><addsrcrecordid>eNp9UMtqWzEUvIQGmqb9ga607Oa6evjqAdmkJmkCNvEiabsTsnRky1xLjnRtyKr5h_xhviQyzjowcA7DzHDONM13gkcEE_5zPVrbzXJEMWUjXIHVSXNGpOCt6BT5VHfFeCuF_Pe5-VLKGmOO-VicNf9nxq5CBDQFk2OIy9fnl1-mgEPzFcS0zGm3rSwKEc3-zNGtgzgEH6CgeU4-9HW5LCXZYIbq-RuGFZo9JWuyC6ZH12GRUwkFmejQ5ECmvSl215uMrvY1qnxtTr3pC3x7n-fNw_XV_eSmnd79vp1cTlvLhBhaBYJwuiCUKSmxw9T5seu4omJMLbaedr5jjC6EB8kcN44ZLJWETnKpsJfsvPlxzN3m9LiDMuhNKBb63kRIu6KpJFx0QnZdldKj1NbbSwavtzlsTH7SBOtD23qtD23rQ9saV2BVTRdHE9Qn9gGyLjZAtOBCBjtol8JH9je0z4rP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816757855</pqid></control><display><type>article</type><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</creator><creatorcontrib>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</creatorcontrib><description>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment.
This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis.
Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes.
Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles.
Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
[Display omitted]</description><identifier>ISSN: 1936-878X</identifier><identifier>EISSN: 1876-7591</identifier><identifier>DOI: 10.1016/j.jcmg.2023.03.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cardiac magnetic resonance ; echocardiography ; machine learning ; mitral regurgitation ; mitral valve prolapse ; myocardial fibrosis ; prognosis value</subject><ispartof>JACC. Cardiovascular imaging, 2023-10, Vol.16 (10), p.1271-1284</ispartof><rights>2023 American College of Cardiology Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</citedby><cites>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</cites><orcidid>0000-0002-9932-2274 ; 0000-0001-7319-3737 ; 0000-0002-6677-6552 ; 0000-0002-3554-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1936878X23001523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huttin, Olivier</creatorcontrib><creatorcontrib>Girerd, Nicolas</creatorcontrib><creatorcontrib>Jobbe-Duval, Antoine</creatorcontrib><creatorcontrib>Constant Dit Beaufils, Anne-Laure</creatorcontrib><creatorcontrib>Senage, Thomas</creatorcontrib><creatorcontrib>Filippetti, Laura</creatorcontrib><creatorcontrib>Cueff, Caroline</creatorcontrib><creatorcontrib>Duarte, Kevin</creatorcontrib><creatorcontrib>Fraix, Antoine</creatorcontrib><creatorcontrib>Piriou, Nicolas</creatorcontrib><creatorcontrib>Mandry, Damien</creatorcontrib><creatorcontrib>Pace, Nathalie</creatorcontrib><creatorcontrib>Le Scouarnec, Solena</creatorcontrib><creatorcontrib>Capoulade, Romain</creatorcontrib><creatorcontrib>Echivard, Matthieu</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Marrec, Marie</creatorcontrib><creatorcontrib>Beaumont, Marine</creatorcontrib><creatorcontrib>Hossu, Gabriella</creatorcontrib><creatorcontrib>Trochu, Jean-Noel</creatorcontrib><creatorcontrib>Sadoul, Nicolas</creatorcontrib><creatorcontrib>Marie, Pierre-Yves</creatorcontrib><creatorcontrib>Guenancia, Charles</creatorcontrib><creatorcontrib>Schott, Jean-Jacques</creatorcontrib><creatorcontrib>Roussel, Jean-Christian</creatorcontrib><creatorcontrib>Serfaty, Jean-Michel</creatorcontrib><creatorcontrib>Selton-Suty, Christine</creatorcontrib><creatorcontrib>Le Tourneau, Thierry</creatorcontrib><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><title>JACC. Cardiovascular imaging</title><description>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment.
This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis.
Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes.
Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles.
Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
[Display omitted]</description><subject>cardiac magnetic resonance</subject><subject>echocardiography</subject><subject>machine learning</subject><subject>mitral regurgitation</subject><subject>mitral valve prolapse</subject><subject>myocardial fibrosis</subject><subject>prognosis value</subject><issn>1936-878X</issn><issn>1876-7591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqWzEUvIQGmqb9ga607Oa6evjqAdmkJmkCNvEiabsTsnRky1xLjnRtyKr5h_xhviQyzjowcA7DzHDONM13gkcEE_5zPVrbzXJEMWUjXIHVSXNGpOCt6BT5VHfFeCuF_Pe5-VLKGmOO-VicNf9nxq5CBDQFk2OIy9fnl1-mgEPzFcS0zGm3rSwKEc3-zNGtgzgEH6CgeU4-9HW5LCXZYIbq-RuGFZo9JWuyC6ZH12GRUwkFmejQ5ECmvSl215uMrvY1qnxtTr3pC3x7n-fNw_XV_eSmnd79vp1cTlvLhBhaBYJwuiCUKSmxw9T5seu4omJMLbaedr5jjC6EB8kcN44ZLJWETnKpsJfsvPlxzN3m9LiDMuhNKBb63kRIu6KpJFx0QnZdldKj1NbbSwavtzlsTH7SBOtD23qtD23rQ9saV2BVTRdHE9Qn9gGyLjZAtOBCBjtol8JH9je0z4rP</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huttin, Olivier</creator><creator>Girerd, Nicolas</creator><creator>Jobbe-Duval, Antoine</creator><creator>Constant Dit Beaufils, Anne-Laure</creator><creator>Senage, Thomas</creator><creator>Filippetti, Laura</creator><creator>Cueff, Caroline</creator><creator>Duarte, Kevin</creator><creator>Fraix, Antoine</creator><creator>Piriou, Nicolas</creator><creator>Mandry, Damien</creator><creator>Pace, Nathalie</creator><creator>Le Scouarnec, Solena</creator><creator>Capoulade, Romain</creator><creator>Echivard, Matthieu</creator><creator>Sellal, Jean Marc</creator><creator>Marrec, Marie</creator><creator>Beaumont, Marine</creator><creator>Hossu, Gabriella</creator><creator>Trochu, Jean-Noel</creator><creator>Sadoul, Nicolas</creator><creator>Marie, Pierre-Yves</creator><creator>Guenancia, Charles</creator><creator>Schott, Jean-Jacques</creator><creator>Roussel, Jean-Christian</creator><creator>Serfaty, Jean-Michel</creator><creator>Selton-Suty, Christine</creator><creator>Le Tourneau, Thierry</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9932-2274</orcidid><orcidid>https://orcid.org/0000-0001-7319-3737</orcidid><orcidid>https://orcid.org/0000-0002-6677-6552</orcidid><orcidid>https://orcid.org/0000-0002-3554-7714</orcidid></search><sort><creationdate>202310</creationdate><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><author>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cardiac magnetic resonance</topic><topic>echocardiography</topic><topic>machine learning</topic><topic>mitral regurgitation</topic><topic>mitral valve prolapse</topic><topic>myocardial fibrosis</topic><topic>prognosis value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huttin, Olivier</creatorcontrib><creatorcontrib>Girerd, Nicolas</creatorcontrib><creatorcontrib>Jobbe-Duval, Antoine</creatorcontrib><creatorcontrib>Constant Dit Beaufils, Anne-Laure</creatorcontrib><creatorcontrib>Senage, Thomas</creatorcontrib><creatorcontrib>Filippetti, Laura</creatorcontrib><creatorcontrib>Cueff, Caroline</creatorcontrib><creatorcontrib>Duarte, Kevin</creatorcontrib><creatorcontrib>Fraix, Antoine</creatorcontrib><creatorcontrib>Piriou, Nicolas</creatorcontrib><creatorcontrib>Mandry, Damien</creatorcontrib><creatorcontrib>Pace, Nathalie</creatorcontrib><creatorcontrib>Le Scouarnec, Solena</creatorcontrib><creatorcontrib>Capoulade, Romain</creatorcontrib><creatorcontrib>Echivard, Matthieu</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Marrec, Marie</creatorcontrib><creatorcontrib>Beaumont, Marine</creatorcontrib><creatorcontrib>Hossu, Gabriella</creatorcontrib><creatorcontrib>Trochu, Jean-Noel</creatorcontrib><creatorcontrib>Sadoul, Nicolas</creatorcontrib><creatorcontrib>Marie, Pierre-Yves</creatorcontrib><creatorcontrib>Guenancia, Charles</creatorcontrib><creatorcontrib>Schott, Jean-Jacques</creatorcontrib><creatorcontrib>Roussel, Jean-Christian</creatorcontrib><creatorcontrib>Serfaty, Jean-Michel</creatorcontrib><creatorcontrib>Selton-Suty, Christine</creatorcontrib><creatorcontrib>Le Tourneau, Thierry</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huttin, Olivier</au><au>Girerd, Nicolas</au><au>Jobbe-Duval, Antoine</au><au>Constant Dit Beaufils, Anne-Laure</au><au>Senage, Thomas</au><au>Filippetti, Laura</au><au>Cueff, Caroline</au><au>Duarte, Kevin</au><au>Fraix, Antoine</au><au>Piriou, Nicolas</au><au>Mandry, Damien</au><au>Pace, Nathalie</au><au>Le Scouarnec, Solena</au><au>Capoulade, Romain</au><au>Echivard, Matthieu</au><au>Sellal, Jean Marc</au><au>Marrec, Marie</au><au>Beaumont, Marine</au><au>Hossu, Gabriella</au><au>Trochu, Jean-Noel</au><au>Sadoul, Nicolas</au><au>Marie, Pierre-Yves</au><au>Guenancia, Charles</au><au>Schott, Jean-Jacques</au><au>Roussel, Jean-Christian</au><au>Serfaty, Jean-Michel</au><au>Selton-Suty, Christine</au><au>Le Tourneau, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</atitle><jtitle>JACC. Cardiovascular imaging</jtitle><date>2023-10</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>1271</spage><epage>1284</epage><pages>1271-1284</pages><issn>1936-878X</issn><eissn>1876-7591</eissn><abstract>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment.
This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis.
Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes.
Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain <21% and indexed LA volume >42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles.
Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825)
[Display omitted]</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcmg.2023.03.009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9932-2274</orcidid><orcidid>https://orcid.org/0000-0001-7319-3737</orcidid><orcidid>https://orcid.org/0000-0002-6677-6552</orcidid><orcidid>https://orcid.org/0000-0002-3554-7714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-878X |
ispartof | JACC. Cardiovascular imaging, 2023-10, Vol.16 (10), p.1271-1284 |
issn | 1936-878X 1876-7591 |
language | eng |
recordid | cdi_proquest_miscellaneous_2816757855 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | cardiac magnetic resonance echocardiography machine learning mitral regurgitation mitral valve prolapse myocardial fibrosis prognosis value |
title | Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Phenogrouping%20in%20MVP%20Identifies%20Profiles%20Associated%20With%20Myocardial%20Fibrosis%20and%20Cardiovascular%20Events&rft.jtitle=JACC.%20Cardiovascular%20imaging&rft.au=Huttin,%20Olivier&rft.date=2023-10&rft.volume=16&rft.issue=10&rft.spage=1271&rft.epage=1284&rft.pages=1271-1284&rft.issn=1936-878X&rft.eissn=1876-7591&rft_id=info:doi/10.1016/j.jcmg.2023.03.009&rft_dat=%3Cproquest_cross%3E2816757855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816757855&rft_id=info:pmid/&rft_els_id=S1936878X23001523&rfr_iscdi=true |