Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events

Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JACC. Cardiovascular imaging 2023-10, Vol.16 (10), p.1271-1284
Hauptverfasser: Huttin, Olivier, Girerd, Nicolas, Jobbe-Duval, Antoine, Constant Dit Beaufils, Anne-Laure, Senage, Thomas, Filippetti, Laura, Cueff, Caroline, Duarte, Kevin, Fraix, Antoine, Piriou, Nicolas, Mandry, Damien, Pace, Nathalie, Le Scouarnec, Solena, Capoulade, Romain, Echivard, Matthieu, Sellal, Jean Marc, Marrec, Marie, Beaumont, Marine, Hossu, Gabriella, Trochu, Jean-Noel, Sadoul, Nicolas, Marie, Pierre-Yves, Guenancia, Charles, Schott, Jean-Jacques, Roussel, Jean-Christian, Serfaty, Jean-Michel, Selton-Suty, Christine, Le Tourneau, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1284
container_issue 10
container_start_page 1271
container_title JACC. Cardiovascular imaging
container_volume 16
creator Huttin, Olivier
Girerd, Nicolas
Jobbe-Duval, Antoine
Constant Dit Beaufils, Anne-Laure
Senage, Thomas
Filippetti, Laura
Cueff, Caroline
Duarte, Kevin
Fraix, Antoine
Piriou, Nicolas
Mandry, Damien
Pace, Nathalie
Le Scouarnec, Solena
Capoulade, Romain
Echivard, Matthieu
Sellal, Jean Marc
Marrec, Marie
Beaumont, Marine
Hossu, Gabriella
Trochu, Jean-Noel
Sadoul, Nicolas
Marie, Pierre-Yves
Guenancia, Charles
Schott, Jean-Jacques
Roussel, Jean-Christian
Serfaty, Jean-Michel
Selton-Suty, Christine
Le Tourneau, Thierry
description Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P < 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain 42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825) [Display omitted]
doi_str_mv 10.1016/j.jcmg.2023.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2816757855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936878X23001523</els_id><sourcerecordid>2816757855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</originalsourceid><addsrcrecordid>eNp9UMtqWzEUvIQGmqb9ga607Oa6evjqAdmkJmkCNvEiabsTsnRky1xLjnRtyKr5h_xhviQyzjowcA7DzHDONM13gkcEE_5zPVrbzXJEMWUjXIHVSXNGpOCt6BT5VHfFeCuF_Pe5-VLKGmOO-VicNf9nxq5CBDQFk2OIy9fnl1-mgEPzFcS0zGm3rSwKEc3-zNGtgzgEH6CgeU4-9HW5LCXZYIbq-RuGFZo9JWuyC6ZH12GRUwkFmejQ5ECmvSl215uMrvY1qnxtTr3pC3x7n-fNw_XV_eSmnd79vp1cTlvLhBhaBYJwuiCUKSmxw9T5seu4omJMLbaedr5jjC6EB8kcN44ZLJWETnKpsJfsvPlxzN3m9LiDMuhNKBb63kRIu6KpJFx0QnZdldKj1NbbSwavtzlsTH7SBOtD23qtD23rQ9saV2BVTRdHE9Qn9gGyLjZAtOBCBjtol8JH9je0z4rP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2816757855</pqid></control><display><type>article</type><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</creator><creatorcontrib>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</creatorcontrib><description>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P &lt; 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain &lt;21% and indexed LA volume &gt;42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825) [Display omitted]</description><identifier>ISSN: 1936-878X</identifier><identifier>EISSN: 1876-7591</identifier><identifier>DOI: 10.1016/j.jcmg.2023.03.009</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>cardiac magnetic resonance ; echocardiography ; machine learning ; mitral regurgitation ; mitral valve prolapse ; myocardial fibrosis ; prognosis value</subject><ispartof>JACC. Cardiovascular imaging, 2023-10, Vol.16 (10), p.1271-1284</ispartof><rights>2023 American College of Cardiology Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</citedby><cites>FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</cites><orcidid>0000-0002-9932-2274 ; 0000-0001-7319-3737 ; 0000-0002-6677-6552 ; 0000-0002-3554-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1936878X23001523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huttin, Olivier</creatorcontrib><creatorcontrib>Girerd, Nicolas</creatorcontrib><creatorcontrib>Jobbe-Duval, Antoine</creatorcontrib><creatorcontrib>Constant Dit Beaufils, Anne-Laure</creatorcontrib><creatorcontrib>Senage, Thomas</creatorcontrib><creatorcontrib>Filippetti, Laura</creatorcontrib><creatorcontrib>Cueff, Caroline</creatorcontrib><creatorcontrib>Duarte, Kevin</creatorcontrib><creatorcontrib>Fraix, Antoine</creatorcontrib><creatorcontrib>Piriou, Nicolas</creatorcontrib><creatorcontrib>Mandry, Damien</creatorcontrib><creatorcontrib>Pace, Nathalie</creatorcontrib><creatorcontrib>Le Scouarnec, Solena</creatorcontrib><creatorcontrib>Capoulade, Romain</creatorcontrib><creatorcontrib>Echivard, Matthieu</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Marrec, Marie</creatorcontrib><creatorcontrib>Beaumont, Marine</creatorcontrib><creatorcontrib>Hossu, Gabriella</creatorcontrib><creatorcontrib>Trochu, Jean-Noel</creatorcontrib><creatorcontrib>Sadoul, Nicolas</creatorcontrib><creatorcontrib>Marie, Pierre-Yves</creatorcontrib><creatorcontrib>Guenancia, Charles</creatorcontrib><creatorcontrib>Schott, Jean-Jacques</creatorcontrib><creatorcontrib>Roussel, Jean-Christian</creatorcontrib><creatorcontrib>Serfaty, Jean-Michel</creatorcontrib><creatorcontrib>Selton-Suty, Christine</creatorcontrib><creatorcontrib>Le Tourneau, Thierry</creatorcontrib><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><title>JACC. Cardiovascular imaging</title><description>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P &lt; 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain &lt;21% and indexed LA volume &gt;42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825) [Display omitted]</description><subject>cardiac magnetic resonance</subject><subject>echocardiography</subject><subject>machine learning</subject><subject>mitral regurgitation</subject><subject>mitral valve prolapse</subject><subject>myocardial fibrosis</subject><subject>prognosis value</subject><issn>1936-878X</issn><issn>1876-7591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqWzEUvIQGmqb9ga607Oa6evjqAdmkJmkCNvEiabsTsnRky1xLjnRtyKr5h_xhviQyzjowcA7DzHDONM13gkcEE_5zPVrbzXJEMWUjXIHVSXNGpOCt6BT5VHfFeCuF_Pe5-VLKGmOO-VicNf9nxq5CBDQFk2OIy9fnl1-mgEPzFcS0zGm3rSwKEc3-zNGtgzgEH6CgeU4-9HW5LCXZYIbq-RuGFZo9JWuyC6ZH12GRUwkFmejQ5ECmvSl215uMrvY1qnxtTr3pC3x7n-fNw_XV_eSmnd79vp1cTlvLhBhaBYJwuiCUKSmxw9T5seu4omJMLbaedr5jjC6EB8kcN44ZLJWETnKpsJfsvPlxzN3m9LiDMuhNKBb63kRIu6KpJFx0QnZdldKj1NbbSwavtzlsTH7SBOtD23qtD23rQ9saV2BVTRdHE9Qn9gGyLjZAtOBCBjtol8JH9je0z4rP</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huttin, Olivier</creator><creator>Girerd, Nicolas</creator><creator>Jobbe-Duval, Antoine</creator><creator>Constant Dit Beaufils, Anne-Laure</creator><creator>Senage, Thomas</creator><creator>Filippetti, Laura</creator><creator>Cueff, Caroline</creator><creator>Duarte, Kevin</creator><creator>Fraix, Antoine</creator><creator>Piriou, Nicolas</creator><creator>Mandry, Damien</creator><creator>Pace, Nathalie</creator><creator>Le Scouarnec, Solena</creator><creator>Capoulade, Romain</creator><creator>Echivard, Matthieu</creator><creator>Sellal, Jean Marc</creator><creator>Marrec, Marie</creator><creator>Beaumont, Marine</creator><creator>Hossu, Gabriella</creator><creator>Trochu, Jean-Noel</creator><creator>Sadoul, Nicolas</creator><creator>Marie, Pierre-Yves</creator><creator>Guenancia, Charles</creator><creator>Schott, Jean-Jacques</creator><creator>Roussel, Jean-Christian</creator><creator>Serfaty, Jean-Michel</creator><creator>Selton-Suty, Christine</creator><creator>Le Tourneau, Thierry</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9932-2274</orcidid><orcidid>https://orcid.org/0000-0001-7319-3737</orcidid><orcidid>https://orcid.org/0000-0002-6677-6552</orcidid><orcidid>https://orcid.org/0000-0002-3554-7714</orcidid></search><sort><creationdate>202310</creationdate><title>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</title><author>Huttin, Olivier ; Girerd, Nicolas ; Jobbe-Duval, Antoine ; Constant Dit Beaufils, Anne-Laure ; Senage, Thomas ; Filippetti, Laura ; Cueff, Caroline ; Duarte, Kevin ; Fraix, Antoine ; Piriou, Nicolas ; Mandry, Damien ; Pace, Nathalie ; Le Scouarnec, Solena ; Capoulade, Romain ; Echivard, Matthieu ; Sellal, Jean Marc ; Marrec, Marie ; Beaumont, Marine ; Hossu, Gabriella ; Trochu, Jean-Noel ; Sadoul, Nicolas ; Marie, Pierre-Yves ; Guenancia, Charles ; Schott, Jean-Jacques ; Roussel, Jean-Christian ; Serfaty, Jean-Michel ; Selton-Suty, Christine ; Le Tourneau, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-9e7162b1239880d02df4d5692742c0cf25f5332b7fe83d6ad3a0898e586890f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>cardiac magnetic resonance</topic><topic>echocardiography</topic><topic>machine learning</topic><topic>mitral regurgitation</topic><topic>mitral valve prolapse</topic><topic>myocardial fibrosis</topic><topic>prognosis value</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huttin, Olivier</creatorcontrib><creatorcontrib>Girerd, Nicolas</creatorcontrib><creatorcontrib>Jobbe-Duval, Antoine</creatorcontrib><creatorcontrib>Constant Dit Beaufils, Anne-Laure</creatorcontrib><creatorcontrib>Senage, Thomas</creatorcontrib><creatorcontrib>Filippetti, Laura</creatorcontrib><creatorcontrib>Cueff, Caroline</creatorcontrib><creatorcontrib>Duarte, Kevin</creatorcontrib><creatorcontrib>Fraix, Antoine</creatorcontrib><creatorcontrib>Piriou, Nicolas</creatorcontrib><creatorcontrib>Mandry, Damien</creatorcontrib><creatorcontrib>Pace, Nathalie</creatorcontrib><creatorcontrib>Le Scouarnec, Solena</creatorcontrib><creatorcontrib>Capoulade, Romain</creatorcontrib><creatorcontrib>Echivard, Matthieu</creatorcontrib><creatorcontrib>Sellal, Jean Marc</creatorcontrib><creatorcontrib>Marrec, Marie</creatorcontrib><creatorcontrib>Beaumont, Marine</creatorcontrib><creatorcontrib>Hossu, Gabriella</creatorcontrib><creatorcontrib>Trochu, Jean-Noel</creatorcontrib><creatorcontrib>Sadoul, Nicolas</creatorcontrib><creatorcontrib>Marie, Pierre-Yves</creatorcontrib><creatorcontrib>Guenancia, Charles</creatorcontrib><creatorcontrib>Schott, Jean-Jacques</creatorcontrib><creatorcontrib>Roussel, Jean-Christian</creatorcontrib><creatorcontrib>Serfaty, Jean-Michel</creatorcontrib><creatorcontrib>Selton-Suty, Christine</creatorcontrib><creatorcontrib>Le Tourneau, Thierry</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>JACC. Cardiovascular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huttin, Olivier</au><au>Girerd, Nicolas</au><au>Jobbe-Duval, Antoine</au><au>Constant Dit Beaufils, Anne-Laure</au><au>Senage, Thomas</au><au>Filippetti, Laura</au><au>Cueff, Caroline</au><au>Duarte, Kevin</au><au>Fraix, Antoine</au><au>Piriou, Nicolas</au><au>Mandry, Damien</au><au>Pace, Nathalie</au><au>Le Scouarnec, Solena</au><au>Capoulade, Romain</au><au>Echivard, Matthieu</au><au>Sellal, Jean Marc</au><au>Marrec, Marie</au><au>Beaumont, Marine</au><au>Hossu, Gabriella</au><au>Trochu, Jean-Noel</au><au>Sadoul, Nicolas</au><au>Marie, Pierre-Yves</au><au>Guenancia, Charles</au><au>Schott, Jean-Jacques</au><au>Roussel, Jean-Christian</au><au>Serfaty, Jean-Michel</au><au>Selton-Suty, Christine</au><au>Le Tourneau, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events</atitle><jtitle>JACC. Cardiovascular imaging</jtitle><date>2023-10</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>1271</spage><epage>1284</epage><pages>1271-1284</pages><issn>1936-878X</issn><eissn>1876-7591</eissn><abstract>Structural changes and myocardial fibrosis quantification by cardiac imaging have become increasingly important to predict cardiovascular events in patients with mitral valve prolapse (MVP). In this setting, it is likely that an unsupervised approach using machine learning may improve their risk assessment. This study used machine learning to improve the risk assessment of patients with MVP by identifying echocardiographic phenotypes and their respective association with myocardial fibrosis and prognosis. Clusters were constructed using echocardiographic variables in a bicentric cohort of patients with MVP (n = 429, age 54 ± 15 years) and subsequently investigated for their association with myocardial fibrosis (assessed by cardiac magnetic resonance) and cardiovascular outcomes. Mitral regurgitation (MR) was severe in 195 (45%) patients. Four clusters were identified: cluster 1 comprised no remodeling with mainly mild MR, cluster 2 was a transitional cluster, cluster 3 included significant left ventricular (LV) and left atrial (LA) remodeling with severe MR, and cluster 4 included remodeling with a drop in LV systolic strain. Clusters 3 and 4 featured more myocardial fibrosis than clusters 1 and 2 (P &lt; 0.0001) and were associated with higher rates of cardiovascular events. Cluster analysis significantly improved diagnostic accuracy over conventional analysis. The decision tree identified the severity of MR along with LV systolic strain &lt;21% and indexed LA volume &gt;42 mL/m2 as the 3 most relevant variables to correctly classify participants into 1 of the echocardiographic profiles. Clustering enabled the identification of 4 clusters with distinct echocardiographic LV and LA remodeling profiles associated with myocardial fibrosis and clinical outcomes. Our findings suggest that a simple algorithm based on only 3 key variables (severity of MR, LV systolic strain, and indexed LA volume) may help risk stratification and decision making in patients with MVP. (Genetic and Phenotypic Characteristics of Mitral Valve Prolapse, NCT03884426; Myocardial Characterization of Arrhythmogenic Mitral Valve Prolapse [MVP STAMP], NCT02879825) [Display omitted]</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcmg.2023.03.009</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9932-2274</orcidid><orcidid>https://orcid.org/0000-0001-7319-3737</orcidid><orcidid>https://orcid.org/0000-0002-6677-6552</orcidid><orcidid>https://orcid.org/0000-0002-3554-7714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-878X
ispartof JACC. Cardiovascular imaging, 2023-10, Vol.16 (10), p.1271-1284
issn 1936-878X
1876-7591
language eng
recordid cdi_proquest_miscellaneous_2816757855
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects cardiac magnetic resonance
echocardiography
machine learning
mitral regurgitation
mitral valve prolapse
myocardial fibrosis
prognosis value
title Machine Learning–Based Phenogrouping in MVP Identifies Profiles Associated With Myocardial Fibrosis and Cardiovascular Events
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A41%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%E2%80%93Based%20Phenogrouping%20in%20MVP%20Identifies%20Profiles%20Associated%20With%20Myocardial%20Fibrosis%20and%20Cardiovascular%20Events&rft.jtitle=JACC.%20Cardiovascular%20imaging&rft.au=Huttin,%20Olivier&rft.date=2023-10&rft.volume=16&rft.issue=10&rft.spage=1271&rft.epage=1284&rft.pages=1271-1284&rft.issn=1936-878X&rft.eissn=1876-7591&rft_id=info:doi/10.1016/j.jcmg.2023.03.009&rft_dat=%3Cproquest_cross%3E2816757855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2816757855&rft_id=info:pmid/&rft_els_id=S1936878X23001523&rfr_iscdi=true