A time domain harmonic BEM implementation for non-homogeneous 3D solids
In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). Th...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 2006-07, Vol.30 (7), p.531-538 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | 7 |
container_start_page | 531 |
container_title | Engineering analysis with boundary elements |
container_volume | 30 |
creator | Daros, C.H. Mesquita, E. |
description | In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid (
ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel. |
doi_str_mv | 10.1016/j.enganabound.2006.02.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28167507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799706000440</els_id><sourcerecordid>1082188063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</originalsourceid><addsrcrecordid>eNqNkMFu1DAURS1EJYaWfzALEJuEZyeO7WWZloLUig1I7CzHfm49SuzBziDx92SYSrBCXb3NefdeHUJeM2gZsOH9rsV0b5Md8yH5lgMMLfAWQDwjG6Zk1zAtvz8nG9BCNFJr-YK8rHUHwLqV3ZCbS7rEGanPs42JPtgy5xQd_XB9R-O8n3DGtNgl5kRDLjTl1DzkOd9jwnyotLuiNU_R1wtyFuxU8dXjPSffPl5_3X5qbr_cfN5e3jauZ2JpRiWlBRbEIIJQHIT1PQbdgfc8-F6znnFvgx8ViNFb2QvQ2tnBu2FQ6MbunLw95e5L_nHAupg5VofTZP8MMlyxQQqQK_juvyADxZlSMHQrqk-oK7nWgsHsS5xt-bVC5mjZ7Mw_ls3RsgFuVsvr75vHGludnUKxycX6N0AqxXt2nLM9cbjK-RmxmOoiJoc-FnSL8Tk-oe0356iYiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082188063</pqid></control><display><type>article</type><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Daros, C.H. ; Mesquita, E.</creator><creatorcontrib>Daros, C.H. ; Mesquita, E.</creatorcontrib><description>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid (
ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2006.02.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alumina–nickel composite ; Boundary element method ; Boundary-integral methods ; Cartesian ; Computational techniques ; Exact sciences and technology ; Functionally graded materials ; Functionally gradient materials ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Media ; Non-homogeneous fundamental solution ; Non-homogeneous subspace ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Three dimensional ; Time domain ; Time-harmonic problems</subject><ispartof>Engineering analysis with boundary elements, 2006-07, Vol.30 (7), p.531-538</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</citedby><cites>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2006.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17882417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Daros, C.H.</creatorcontrib><creatorcontrib>Mesquita, E.</creatorcontrib><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><title>Engineering analysis with boundary elements</title><description>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid (
ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</description><subject>Alumina–nickel composite</subject><subject>Boundary element method</subject><subject>Boundary-integral methods</subject><subject>Cartesian</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Non-homogeneous fundamental solution</subject><subject>Non-homogeneous subspace</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><subject>Time domain</subject><subject>Time-harmonic problems</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAURS1EJYaWfzALEJuEZyeO7WWZloLUig1I7CzHfm49SuzBziDx92SYSrBCXb3NefdeHUJeM2gZsOH9rsV0b5Md8yH5lgMMLfAWQDwjG6Zk1zAtvz8nG9BCNFJr-YK8rHUHwLqV3ZCbS7rEGanPs42JPtgy5xQd_XB9R-O8n3DGtNgl5kRDLjTl1DzkOd9jwnyotLuiNU_R1wtyFuxU8dXjPSffPl5_3X5qbr_cfN5e3jauZ2JpRiWlBRbEIIJQHIT1PQbdgfc8-F6znnFvgx8ViNFb2QvQ2tnBu2FQ6MbunLw95e5L_nHAupg5VofTZP8MMlyxQQqQK_juvyADxZlSMHQrqk-oK7nWgsHsS5xt-bVC5mjZ7Mw_ls3RsgFuVsvr75vHGludnUKxycX6N0AqxXt2nLM9cbjK-RmxmOoiJoc-FnSL8Tk-oe0356iYiQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Daros, C.H.</creator><creator>Mesquita, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20060701</creationdate><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><author>Daros, C.H. ; Mesquita, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alumina–nickel composite</topic><topic>Boundary element method</topic><topic>Boundary-integral methods</topic><topic>Cartesian</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Non-homogeneous fundamental solution</topic><topic>Non-homogeneous subspace</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><topic>Time domain</topic><topic>Time-harmonic problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daros, C.H.</creatorcontrib><creatorcontrib>Mesquita, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daros, C.H.</au><au>Mesquita, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time domain harmonic BEM implementation for non-homogeneous 3D solids</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>30</volume><issue>7</issue><spage>531</spage><epage>538</epage><pages>531-538</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid (
ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2006.02.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2006-07, Vol.30 (7), p.531-538 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_28167507 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alumina–nickel composite Boundary element method Boundary-integral methods Cartesian Computational techniques Exact sciences and technology Functionally graded materials Functionally gradient materials Fundamental areas of phenomenology (including applications) Mathematical analysis Mathematical methods in physics Mathematical models Media Non-homogeneous fundamental solution Non-homogeneous subspace Physics Solid mechanics Structural and continuum mechanics Three dimensional Time domain Time-harmonic problems |
title | A time domain harmonic BEM implementation for non-homogeneous 3D solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time%20domain%20harmonic%20BEM%20implementation%20for%20non-homogeneous%203D%20solids&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Daros,%20C.H.&rft.date=2006-07-01&rft.volume=30&rft.issue=7&rft.spage=531&rft.epage=538&rft.pages=531-538&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2006.02.005&rft_dat=%3Cproquest_cross%3E1082188063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082188063&rft_id=info:pmid/&rft_els_id=S0955799706000440&rfr_iscdi=true |