A time domain harmonic BEM implementation for non-homogeneous 3D solids

In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2006-07, Vol.30 (7), p.531-538
Hauptverfasser: Daros, C.H., Mesquita, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue 7
container_start_page 531
container_title Engineering analysis with boundary elements
container_volume 30
creator Daros, C.H.
Mesquita, E.
description In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.
doi_str_mv 10.1016/j.enganabound.2006.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28167507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799706000440</els_id><sourcerecordid>1082188063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</originalsourceid><addsrcrecordid>eNqNkMFu1DAURS1EJYaWfzALEJuEZyeO7WWZloLUig1I7CzHfm49SuzBziDx92SYSrBCXb3NefdeHUJeM2gZsOH9rsV0b5Md8yH5lgMMLfAWQDwjG6Zk1zAtvz8nG9BCNFJr-YK8rHUHwLqV3ZCbS7rEGanPs42JPtgy5xQd_XB9R-O8n3DGtNgl5kRDLjTl1DzkOd9jwnyotLuiNU_R1wtyFuxU8dXjPSffPl5_3X5qbr_cfN5e3jauZ2JpRiWlBRbEIIJQHIT1PQbdgfc8-F6znnFvgx8ViNFb2QvQ2tnBu2FQ6MbunLw95e5L_nHAupg5VofTZP8MMlyxQQqQK_juvyADxZlSMHQrqk-oK7nWgsHsS5xt-bVC5mjZ7Mw_ls3RsgFuVsvr75vHGludnUKxycX6N0AqxXt2nLM9cbjK-RmxmOoiJoc-FnSL8Tk-oe0356iYiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082188063</pqid></control><display><type>article</type><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><source>Access via ScienceDirect (Elsevier)</source><creator>Daros, C.H. ; Mesquita, E.</creator><creatorcontrib>Daros, C.H. ; Mesquita, E.</creatorcontrib><description>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2006.02.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alumina–nickel composite ; Boundary element method ; Boundary-integral methods ; Cartesian ; Computational techniques ; Exact sciences and technology ; Functionally graded materials ; Functionally gradient materials ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Media ; Non-homogeneous fundamental solution ; Non-homogeneous subspace ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Three dimensional ; Time domain ; Time-harmonic problems</subject><ispartof>Engineering analysis with boundary elements, 2006-07, Vol.30 (7), p.531-538</ispartof><rights>2006 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</citedby><cites>FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2006.02.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17882417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Daros, C.H.</creatorcontrib><creatorcontrib>Mesquita, E.</creatorcontrib><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><title>Engineering analysis with boundary elements</title><description>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</description><subject>Alumina–nickel composite</subject><subject>Boundary element method</subject><subject>Boundary-integral methods</subject><subject>Cartesian</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Non-homogeneous fundamental solution</subject><subject>Non-homogeneous subspace</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Three dimensional</subject><subject>Time domain</subject><subject>Time-harmonic problems</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkMFu1DAURS1EJYaWfzALEJuEZyeO7WWZloLUig1I7CzHfm49SuzBziDx92SYSrBCXb3NefdeHUJeM2gZsOH9rsV0b5Md8yH5lgMMLfAWQDwjG6Zk1zAtvz8nG9BCNFJr-YK8rHUHwLqV3ZCbS7rEGanPs42JPtgy5xQd_XB9R-O8n3DGtNgl5kRDLjTl1DzkOd9jwnyotLuiNU_R1wtyFuxU8dXjPSffPl5_3X5qbr_cfN5e3jauZ2JpRiWlBRbEIIJQHIT1PQbdgfc8-F6znnFvgx8ViNFb2QvQ2tnBu2FQ6MbunLw95e5L_nHAupg5VofTZP8MMlyxQQqQK_juvyADxZlSMHQrqk-oK7nWgsHsS5xt-bVC5mjZ7Mw_ls3RsgFuVsvr75vHGludnUKxycX6N0AqxXt2nLM9cbjK-RmxmOoiJoc-FnSL8Tk-oe0356iYiQ</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Daros, C.H.</creator><creator>Mesquita, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20060701</creationdate><title>A time domain harmonic BEM implementation for non-homogeneous 3D solids</title><author>Daros, C.H. ; Mesquita, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b877a01f565f58205ad4ef930dd2fd491412dafdb805bda745099ca6dc668ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alumina–nickel composite</topic><topic>Boundary element method</topic><topic>Boundary-integral methods</topic><topic>Cartesian</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Non-homogeneous fundamental solution</topic><topic>Non-homogeneous subspace</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Three dimensional</topic><topic>Time domain</topic><topic>Time-harmonic problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daros, C.H.</creatorcontrib><creatorcontrib>Mesquita, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daros, C.H.</au><au>Mesquita, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time domain harmonic BEM implementation for non-homogeneous 3D solids</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>30</volume><issue>7</issue><spage>531</spage><epage>538</epage><pages>531-538</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>In the present work, a Boundary Element Method implementation is presented for a specific non-homogeneous elastic media. The media under consideration is a Poisson solid ( ν=0.25), which requires additionally a quadratic variation for the material parameters along one cartesian axis (e.g. depth). The 3D problem for the time-harmonic case was implemented and numerically validated for specific problems. Moreover, the static version of the present problem was used to model a real functionally graded composite of alumina–nickel.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2006.02.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2006-07, Vol.30 (7), p.531-538
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_28167507
source Access via ScienceDirect (Elsevier)
subjects Alumina–nickel composite
Boundary element method
Boundary-integral methods
Cartesian
Computational techniques
Exact sciences and technology
Functionally graded materials
Functionally gradient materials
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical methods in physics
Mathematical models
Media
Non-homogeneous fundamental solution
Non-homogeneous subspace
Physics
Solid mechanics
Structural and continuum mechanics
Three dimensional
Time domain
Time-harmonic problems
title A time domain harmonic BEM implementation for non-homogeneous 3D solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time%20domain%20harmonic%20BEM%20implementation%20for%20non-homogeneous%203D%20solids&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Daros,%20C.H.&rft.date=2006-07-01&rft.volume=30&rft.issue=7&rft.spage=531&rft.epage=538&rft.pages=531-538&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2006.02.005&rft_dat=%3Cproquest_cross%3E1082188063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082188063&rft_id=info:pmid/&rft_els_id=S0955799706000440&rfr_iscdi=true