Fixed mesh front-tracking methodology for finite element simulations
A direct front‐tracking method using an Eulerian–Lagrangian formulation is developed in two space dimensions. The front‐tracking method is general in that it can track any type of interface once its local velocity is specified or has been determined by calculation. The method uses marker points to d...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2004-10, Vol.61 (6), p.928-948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 6 |
container_start_page | 928 |
container_title | International journal for numerical methods in engineering |
container_volume | 61 |
creator | Zhao, P. Heinrich, J. C. Poirier, D. R. |
description | A direct front‐tracking method using an Eulerian–Lagrangian formulation is developed in two space dimensions. The front‐tracking method is general in that it can track any type of interface once its local velocity is specified or has been determined by calculation. The method uses marker points to describe the interface position and tracks the interface evolution on a fixed finite‐element mesh, including growth, contraction, splitting and merging. Interfacial conditions are applied directly at the interface position. The method is applied to three scenarios that involve different interface conditions and are based on energy and mass diffusion. The three calculations are for the dendritic solidification of a pure substance, the cellular growth of an alloy, and the Ostwald ripening of silica particles in silicon. Numerical results show that very complicated interface morphologies and topological changes can be simulated properly and efficiently. Copyright © 2004 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.1098 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28166365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082195300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3998-44f90b63fa927d454b9a0069302e2c210534b4224d038c53defcae86ca66f15d3</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpSDxCJsQSONuxE4-ohRZRygJitNzkXAxJDHYq6NuTqgjEANN_uvt0w0_IMYUzCsDO2wb7QRU7ZNBHngKDfJcM-pNKhSroPjmI8RmAUgF8QMZX7gOrpMH4lNjg2y7tgilfXLvsd92Tr3ztl-vE-pBY17oOE6yxwbZLomtWtemcb-Mh2bOmjnj0lUPycHV5P5qms7vJ9ehilpZcqSLNMqtgIbk1iuVVJrKFMgBScWDISkZB8GyRMZZVwItS8AptabCQpZHSUlHxITnZ_n0N_m2FsdONiyXWtWnRr6JmBZWSS9HD038hhYJRJTjADy2DjzGg1a_BNSase6Q3jeq-Ub1ptKfplr67Gtd_Oj2_vfztXezw49ub8KJlznOhH-cTPYHpeJzdCF3wT1WehXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082195300</pqid></control><display><type>article</type><title>Fixed mesh front-tracking methodology for finite element simulations</title><source>Access via Wiley Online Library</source><creator>Zhao, P. ; Heinrich, J. C. ; Poirier, D. R.</creator><creatorcontrib>Zhao, P. ; Heinrich, J. C. ; Poirier, D. R.</creatorcontrib><description>A direct front‐tracking method using an Eulerian–Lagrangian formulation is developed in two space dimensions. The front‐tracking method is general in that it can track any type of interface once its local velocity is specified or has been determined by calculation. The method uses marker points to describe the interface position and tracks the interface evolution on a fixed finite‐element mesh, including growth, contraction, splitting and merging. Interfacial conditions are applied directly at the interface position. The method is applied to three scenarios that involve different interface conditions and are based on energy and mass diffusion. The three calculations are for the dendritic solidification of a pure substance, the cellular growth of an alloy, and the Ostwald ripening of silica particles in silicon. Numerical results show that very complicated interface morphologies and topological changes can be simulated properly and efficiently. Copyright © 2004 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1098</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Cellular ; Computer simulation ; dendritic solidification ; Finite element method ; interface-tracking ; Mathematical analysis ; Mathematical models ; Morphology ; Numerical analysis ; Ostwald ripening</subject><ispartof>International journal for numerical methods in engineering, 2004-10, Vol.61 (6), p.928-948</ispartof><rights>Copyright © 2004 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3998-44f90b63fa927d454b9a0069302e2c210534b4224d038c53defcae86ca66f15d3</citedby><cites>FETCH-LOGICAL-c3998-44f90b63fa927d454b9a0069302e2c210534b4224d038c53defcae86ca66f15d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1098$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1098$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids></links><search><creatorcontrib>Zhao, P.</creatorcontrib><creatorcontrib>Heinrich, J. C.</creatorcontrib><creatorcontrib>Poirier, D. R.</creatorcontrib><title>Fixed mesh front-tracking methodology for finite element simulations</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>A direct front‐tracking method using an Eulerian–Lagrangian formulation is developed in two space dimensions. The front‐tracking method is general in that it can track any type of interface once its local velocity is specified or has been determined by calculation. The method uses marker points to describe the interface position and tracks the interface evolution on a fixed finite‐element mesh, including growth, contraction, splitting and merging. Interfacial conditions are applied directly at the interface position. The method is applied to three scenarios that involve different interface conditions and are based on energy and mass diffusion. The three calculations are for the dendritic solidification of a pure substance, the cellular growth of an alloy, and the Ostwald ripening of silica particles in silicon. Numerical results show that very complicated interface morphologies and topological changes can be simulated properly and efficiently. Copyright © 2004 John Wiley & Sons, Ltd.</description><subject>Cellular</subject><subject>Computer simulation</subject><subject>dendritic solidification</subject><subject>Finite element method</subject><subject>interface-tracking</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Morphology</subject><subject>Numerical analysis</subject><subject>Ostwald ripening</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpSDxCJsQSONuxE4-ohRZRygJitNzkXAxJDHYq6NuTqgjEANN_uvt0w0_IMYUzCsDO2wb7QRU7ZNBHngKDfJcM-pNKhSroPjmI8RmAUgF8QMZX7gOrpMH4lNjg2y7tgilfXLvsd92Tr3ztl-vE-pBY17oOE6yxwbZLomtWtemcb-Mh2bOmjnj0lUPycHV5P5qms7vJ9ehilpZcqSLNMqtgIbk1iuVVJrKFMgBScWDISkZB8GyRMZZVwItS8AptabCQpZHSUlHxITnZ_n0N_m2FsdONiyXWtWnRr6JmBZWSS9HD038hhYJRJTjADy2DjzGg1a_BNSase6Q3jeq-Ub1ptKfplr67Gtd_Oj2_vfztXezw49ub8KJlznOhH-cTPYHpeJzdCF3wT1WehXI</recordid><startdate>20041014</startdate><enddate>20041014</enddate><creator>Zhao, P.</creator><creator>Heinrich, J. C.</creator><creator>Poirier, D. R.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20041014</creationdate><title>Fixed mesh front-tracking methodology for finite element simulations</title><author>Zhao, P. ; Heinrich, J. C. ; Poirier, D. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3998-44f90b63fa927d454b9a0069302e2c210534b4224d038c53defcae86ca66f15d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cellular</topic><topic>Computer simulation</topic><topic>dendritic solidification</topic><topic>Finite element method</topic><topic>interface-tracking</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Morphology</topic><topic>Numerical analysis</topic><topic>Ostwald ripening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, P.</creatorcontrib><creatorcontrib>Heinrich, J. C.</creatorcontrib><creatorcontrib>Poirier, D. R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, P.</au><au>Heinrich, J. C.</au><au>Poirier, D. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed mesh front-tracking methodology for finite element simulations</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2004-10-14</date><risdate>2004</risdate><volume>61</volume><issue>6</issue><spage>928</spage><epage>948</epage><pages>928-948</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>A direct front‐tracking method using an Eulerian–Lagrangian formulation is developed in two space dimensions. The front‐tracking method is general in that it can track any type of interface once its local velocity is specified or has been determined by calculation. The method uses marker points to describe the interface position and tracks the interface evolution on a fixed finite‐element mesh, including growth, contraction, splitting and merging. Interfacial conditions are applied directly at the interface position. The method is applied to three scenarios that involve different interface conditions and are based on energy and mass diffusion. The three calculations are for the dendritic solidification of a pure substance, the cellular growth of an alloy, and the Ostwald ripening of silica particles in silicon. Numerical results show that very complicated interface morphologies and topological changes can be simulated properly and efficiently. Copyright © 2004 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1098</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2004-10, Vol.61 (6), p.928-948 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_28166365 |
source | Access via Wiley Online Library |
subjects | Cellular Computer simulation dendritic solidification Finite element method interface-tracking Mathematical analysis Mathematical models Morphology Numerical analysis Ostwald ripening |
title | Fixed mesh front-tracking methodology for finite element simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20mesh%20front-tracking%20methodology%20for%20finite%20element%20simulations&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Zhao,%20P.&rft.date=2004-10-14&rft.volume=61&rft.issue=6&rft.spage=928&rft.epage=948&rft.pages=928-948&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.1098&rft_dat=%3Cproquest_cross%3E1082195300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082195300&rft_id=info:pmid/&rfr_iscdi=true |