Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter

A three‐dimensional (3‐D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first‐principles ionospheric physics model and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radio science 2004-02, Vol.39 (1), p.n/a
Hauptverfasser: Hajj, G. A., Wilson, B. D., Wang, C., Pi, X., Rosen, I. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Radio science
container_volume 39
creator Hajj, G. A.
Wilson, B. D.
Wang, C.
Pi, X.
Rosen, I. G.
description A three‐dimensional (3‐D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first‐principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques. Because of the large dimension of the state (i.e., electron density on a global 3‐D grid), implementation of a full Kalman filter is not computationally feasible. Of the possible suboptimal implementations of the Kalman filter, we have chosen a band‐limited Kalman filter where a full time propagation of the state error covariance is performed, but it is always kept sparse and banded. The effectiveness of ground GPS data for specifying the ionosphere is assessed by assimilating slant total electron content (TEC) data from 98 sites into the GAIM Kalman filter and validating the electron density field against independent measurements. A series of GAIM analyses are presented and validated by comparisons to JPL's global ionospheric maps (GIM) of vertical TEC (VTEC) and measurements from TOPEX. A statistical evaluation of GAIM and GIM against TOPEX VTEC indicates that GAIM accuracy is comparable or superior to GIM.
doi_str_mv 10.1029/2002RS002859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28161852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17517787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-875f447d96ac04cd937e1ba90c0b95c396b035e2c4e55c92417e3ccf4747d5be3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EUofCrh_gFSvS2rEd28tqhk4pFVQdKOwsx3lhDE48tT2i-XtSTYVYwebdxTvnbi5CJ5ScUlLrs5qQ-nYzHyX0M7SgmvNKav3tOVoQwlXVNIQfoZc5_yCEctHwBZpWtlhsc_aDD7b4OOLY4-8p7scOr282uMRiA4YArqT56eJYYCzYjyVii3fbKXuXq9Zm6PBsx7zbQvIOD7GDgNsJ7zM8VpYt4A82DHbEvQ8F0iv0orchw-unPEZfLt59Xl5W15_W75fn15XjlKlKSdFzLjvdWEe46zSTQFuriSOtFo7ppiVMQO04COF0zakE5lzP5SyJFtgxenPo3aV4v4dczOCzgxDsCHGfTa1oQ5Wo_wtSKaiUSs7g2wPoUsw5QW92yQ82TYYS8ziE-XuIGacH_JcPMP2TNberDddKzU51cHwu8PDHsemnaSSTwnz9uDbkclWzq7s7s2S_AYlsmY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17517787</pqid></control><display><type>article</type><title>Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hajj, G. A. ; Wilson, B. D. ; Wang, C. ; Pi, X. ; Rosen, I. G.</creator><creatorcontrib>Hajj, G. A. ; Wilson, B. D. ; Wang, C. ; Pi, X. ; Rosen, I. G.</creatorcontrib><description>A three‐dimensional (3‐D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first‐principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques. Because of the large dimension of the state (i.e., electron density on a global 3‐D grid), implementation of a full Kalman filter is not computationally feasible. Of the possible suboptimal implementations of the Kalman filter, we have chosen a band‐limited Kalman filter where a full time propagation of the state error covariance is performed, but it is always kept sparse and banded. The effectiveness of ground GPS data for specifying the ionosphere is assessed by assimilating slant total electron content (TEC) data from 98 sites into the GAIM Kalman filter and validating the electron density field against independent measurements. A series of GAIM analyses are presented and validated by comparisons to JPL's global ionospheric maps (GIM) of vertical TEC (VTEC) and measurements from TOPEX. A statistical evaluation of GAIM and GIM against TOPEX VTEC indicates that GAIM accuracy is comparable or superior to GIM.</description><identifier>ISSN: 0048-6604</identifier><identifier>EISSN: 1944-799X</identifier><identifier>DOI: 10.1029/2002RS002859</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>data assimilation ; forecast ; ionosphere ; Kalman filter</subject><ispartof>Radio science, 2004-02, Vol.39 (1), p.n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-875f447d96ac04cd937e1ba90c0b95c396b035e2c4e55c92417e3ccf4747d5be3</citedby><cites>FETCH-LOGICAL-c4138-875f447d96ac04cd937e1ba90c0b95c396b035e2c4e55c92417e3ccf4747d5be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002RS002859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002RS002859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids></links><search><creatorcontrib>Hajj, G. A.</creatorcontrib><creatorcontrib>Wilson, B. D.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Pi, X.</creatorcontrib><creatorcontrib>Rosen, I. G.</creatorcontrib><title>Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter</title><title>Radio science</title><addtitle>Radio Sci</addtitle><description>A three‐dimensional (3‐D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first‐principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques. Because of the large dimension of the state (i.e., electron density on a global 3‐D grid), implementation of a full Kalman filter is not computationally feasible. Of the possible suboptimal implementations of the Kalman filter, we have chosen a band‐limited Kalman filter where a full time propagation of the state error covariance is performed, but it is always kept sparse and banded. The effectiveness of ground GPS data for specifying the ionosphere is assessed by assimilating slant total electron content (TEC) data from 98 sites into the GAIM Kalman filter and validating the electron density field against independent measurements. A series of GAIM analyses are presented and validated by comparisons to JPL's global ionospheric maps (GIM) of vertical TEC (VTEC) and measurements from TOPEX. A statistical evaluation of GAIM and GIM against TOPEX VTEC indicates that GAIM accuracy is comparable or superior to GIM.</description><subject>data assimilation</subject><subject>forecast</subject><subject>ionosphere</subject><subject>Kalman filter</subject><issn>0048-6604</issn><issn>1944-799X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURS0EUofCrh_gFSvS2rEd28tqhk4pFVQdKOwsx3lhDE48tT2i-XtSTYVYwebdxTvnbi5CJ5ScUlLrs5qQ-nYzHyX0M7SgmvNKav3tOVoQwlXVNIQfoZc5_yCEctHwBZpWtlhsc_aDD7b4OOLY4-8p7scOr282uMRiA4YArqT56eJYYCzYjyVii3fbKXuXq9Zm6PBsx7zbQvIOD7GDgNsJ7zM8VpYt4A82DHbEvQ8F0iv0orchw-unPEZfLt59Xl5W15_W75fn15XjlKlKSdFzLjvdWEe46zSTQFuriSOtFo7ppiVMQO04COF0zakE5lzP5SyJFtgxenPo3aV4v4dczOCzgxDsCHGfTa1oQ5Wo_wtSKaiUSs7g2wPoUsw5QW92yQ82TYYS8ziE-XuIGacH_JcPMP2TNberDddKzU51cHwu8PDHsemnaSSTwnz9uDbkclWzq7s7s2S_AYlsmY8</recordid><startdate>200402</startdate><enddate>200402</enddate><creator>Hajj, G. A.</creator><creator>Wilson, B. D.</creator><creator>Wang, C.</creator><creator>Pi, X.</creator><creator>Rosen, I. G.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200402</creationdate><title>Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter</title><author>Hajj, G. A. ; Wilson, B. D. ; Wang, C. ; Pi, X. ; Rosen, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-875f447d96ac04cd937e1ba90c0b95c396b035e2c4e55c92417e3ccf4747d5be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>data assimilation</topic><topic>forecast</topic><topic>ionosphere</topic><topic>Kalman filter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajj, G. A.</creatorcontrib><creatorcontrib>Wilson, B. D.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><creatorcontrib>Pi, X.</creatorcontrib><creatorcontrib>Rosen, I. G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Radio science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajj, G. A.</au><au>Wilson, B. D.</au><au>Wang, C.</au><au>Pi, X.</au><au>Rosen, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter</atitle><jtitle>Radio science</jtitle><addtitle>Radio Sci</addtitle><date>2004-02</date><risdate>2004</risdate><volume>39</volume><issue>1</issue><epage>n/a</epage><issn>0048-6604</issn><eissn>1944-799X</eissn><abstract>A three‐dimensional (3‐D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first‐principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques. Because of the large dimension of the state (i.e., electron density on a global 3‐D grid), implementation of a full Kalman filter is not computationally feasible. Of the possible suboptimal implementations of the Kalman filter, we have chosen a band‐limited Kalman filter where a full time propagation of the state error covariance is performed, but it is always kept sparse and banded. The effectiveness of ground GPS data for specifying the ionosphere is assessed by assimilating slant total electron content (TEC) data from 98 sites into the GAIM Kalman filter and validating the electron density field against independent measurements. A series of GAIM analyses are presented and validated by comparisons to JPL's global ionospheric maps (GIM) of vertical TEC (VTEC) and measurements from TOPEX. A statistical evaluation of GAIM and GIM against TOPEX VTEC indicates that GAIM accuracy is comparable or superior to GIM.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002RS002859</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-6604
ispartof Radio science, 2004-02, Vol.39 (1), p.n/a
issn 0048-6604
1944-799X
language eng
recordid cdi_proquest_miscellaneous_28161852
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects data assimilation
forecast
ionosphere
Kalman filter
title Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A14%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20assimilation%20of%20ground%20GPS%20total%20electron%20content%20into%20a%20physics-based%20ionospheric%20model%20by%20use%20of%20the%20Kalman%20filter&rft.jtitle=Radio%20science&rft.au=Hajj,%20G.%20A.&rft.date=2004-02&rft.volume=39&rft.issue=1&rft.epage=n/a&rft.issn=0048-6604&rft.eissn=1944-799X&rft_id=info:doi/10.1029/2002RS002859&rft_dat=%3Cproquest_cross%3E17517787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17517787&rft_id=info:pmid/&rfr_iscdi=true