Thermal Resistance of Nanowire-Plane Interfaces
This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substr...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2005-06, Vol.127 (6), p.664-668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 6 |
container_start_page | 664 |
container_title | Journal of heat transfer |
container_volume | 127 |
creator | Bahadur, V Xu, J Liu, Y Fisher, T. S |
description | This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substrate is obtained through a calculation of the van der Waals interaction energy between the two. The model estimates numerical values of constriction and gap resistances for several nanowire-substrate combinations with water and air as the surrounding media. The total interface resistance is almost equal to the gap resistance when the surrounding medium has a high thermal conductivity. For a low-conductivity medium, the interface resistance is dominated by the constriction resistance, which itself depends significantly on nanowire and substrate conductivities. A trend observed in all calculations is that the interface resistance increases with smaller nanowires, showing that interface resistance will be a significant parameter in the design and performance of nanoelectronic devices. |
doi_str_mv | 10.1115/1.1865217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28153407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28153407</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-1105f166dca1a4106f5c7b05c538c5892804f9e474cf8d9043a4a49a2858ac033</originalsourceid><addsrcrecordid>eNpFkM1LAzEQxYMoWKsHz172ouBh28zmY5OjlKqFoiL1HMY0wS37UTNbxP_eLS14epffezPvMXYNfAIAagoTMFoVUJ6wEajC5MZKccpGnBdFDtLAObsg2nAOQkg7YtPVV0gN1tl7oIp6bH3Iupi9YNv9VCnkbzW2IVu0fUgRfaBLdhaxpnB11DH7eJyvZs_58vVpMXtY5ihK3ecAXEXQeu0RUALXUfnykyuvhPHK2MJwGW2QpfTRrC2XAiVKi4VRBj0XYszuDrnb1H3vAvWuqciHev9OtyNXGFBC8nIA7w-gTx1RCtFtU9Vg-nXA3X4SB-44ycDeHkORPNYxDXUr-jdoC6rUeuBuDhxSE9ym26V26OqkFsNZ8QctIGal</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28153407</pqid></control><display><type>article</type><title>Thermal Resistance of Nanowire-Plane Interfaces</title><source>ASME Transactions Journals (Current)</source><creator>Bahadur, V ; Xu, J ; Liu, Y ; Fisher, T. S</creator><creatorcontrib>Bahadur, V ; Xu, J ; Liu, Y ; Fisher, T. S</creatorcontrib><description>This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substrate is obtained through a calculation of the van der Waals interaction energy between the two. The model estimates numerical values of constriction and gap resistances for several nanowire-substrate combinations with water and air as the surrounding media. The total interface resistance is almost equal to the gap resistance when the surrounding medium has a high thermal conductivity. For a low-conductivity medium, the interface resistance is dominated by the constriction resistance, which itself depends significantly on nanowire and substrate conductivities. A trend observed in all calculations is that the interface resistance increases with smaller nanowires, showing that interface resistance will be a significant parameter in the design and performance of nanoelectronic devices.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.1865217</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Molecular electronics, nanoelectronics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Journal of heat transfer, 2005-06, Vol.127 (6), p.664-668</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-1105f166dca1a4106f5c7b05c538c5892804f9e474cf8d9043a4a49a2858ac033</citedby><cites>FETCH-LOGICAL-a376t-1105f166dca1a4106f5c7b05c538c5892804f9e474cf8d9043a4a49a2858ac033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16915766$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahadur, V</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Fisher, T. S</creatorcontrib><title>Thermal Resistance of Nanowire-Plane Interfaces</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substrate is obtained through a calculation of the van der Waals interaction energy between the two. The model estimates numerical values of constriction and gap resistances for several nanowire-substrate combinations with water and air as the surrounding media. The total interface resistance is almost equal to the gap resistance when the surrounding medium has a high thermal conductivity. For a low-conductivity medium, the interface resistance is dominated by the constriction resistance, which itself depends significantly on nanowire and substrate conductivities. A trend observed in all calculations is that the interface resistance increases with smaller nanowires, showing that interface resistance will be a significant parameter in the design and performance of nanoelectronic devices.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFkM1LAzEQxYMoWKsHz172ouBh28zmY5OjlKqFoiL1HMY0wS37UTNbxP_eLS14epffezPvMXYNfAIAagoTMFoVUJ6wEajC5MZKccpGnBdFDtLAObsg2nAOQkg7YtPVV0gN1tl7oIp6bH3Iupi9YNv9VCnkbzW2IVu0fUgRfaBLdhaxpnB11DH7eJyvZs_58vVpMXtY5ihK3ecAXEXQeu0RUALXUfnykyuvhPHK2MJwGW2QpfTRrC2XAiVKi4VRBj0XYszuDrnb1H3vAvWuqciHev9OtyNXGFBC8nIA7w-gTx1RCtFtU9Vg-nXA3X4SB-44ycDeHkORPNYxDXUr-jdoC6rUeuBuDhxSE9ym26V26OqkFsNZ8QctIGal</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Bahadur, V</creator><creator>Xu, J</creator><creator>Liu, Y</creator><creator>Fisher, T. S</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050601</creationdate><title>Thermal Resistance of Nanowire-Plane Interfaces</title><author>Bahadur, V ; Xu, J ; Liu, Y ; Fisher, T. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-1105f166dca1a4106f5c7b05c538c5892804f9e474cf8d9043a4a49a2858ac033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahadur, V</creatorcontrib><creatorcontrib>Xu, J</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>Fisher, T. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahadur, V</au><au>Xu, J</au><au>Liu, Y</au><au>Fisher, T. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Resistance of Nanowire-Plane Interfaces</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2005-06-01</date><risdate>2005</risdate><volume>127</volume><issue>6</issue><spage>664</spage><epage>668</epage><pages>664-668</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>This paper employs continuum principles combined with van der Waals theory to estimate the thermal contact resistance between nanowires and planar substrates. This resistance is modeled using elastic deformation theory and thermal resistance relations. The contact force between a nanowire and substrate is obtained through a calculation of the van der Waals interaction energy between the two. The model estimates numerical values of constriction and gap resistances for several nanowire-substrate combinations with water and air as the surrounding media. The total interface resistance is almost equal to the gap resistance when the surrounding medium has a high thermal conductivity. For a low-conductivity medium, the interface resistance is dominated by the constriction resistance, which itself depends significantly on nanowire and substrate conductivities. A trend observed in all calculations is that the interface resistance increases with smaller nanowires, showing that interface resistance will be a significant parameter in the design and performance of nanoelectronic devices.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.1865217</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2005-06, Vol.127 (6), p.664-668 |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_28153407 |
source | ASME Transactions Journals (Current) |
subjects | Applied sciences Electronics Exact sciences and technology Molecular electronics, nanoelectronics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Thermal Resistance of Nanowire-Plane Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Resistance%20of%20Nanowire-Plane%20Interfaces&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Bahadur,%20V&rft.date=2005-06-01&rft.volume=127&rft.issue=6&rft.spage=664&rft.epage=668&rft.pages=664-668&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.1865217&rft_dat=%3Cproquest_cross%3E28153407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28153407&rft_id=info:pmid/&rfr_iscdi=true |