Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements
Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2023-05, Vol.175 (3), p.e13935-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e13935 |
container_title | Physiologia plantarum |
container_volume | 175 |
creator | Frey, Carlos Hernández‐Barriuso, Andrés Encina, Antonio Acebes, José Luis |
description | Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non‐invasive methods—thermographic inference of transpiration and determination of chlorophyll quantum yields—for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non‐grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from −0.34 ± 0.16 MPa in non‐grafted plants to −0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre‐grafting values at 12–16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionality. |
doi_str_mv | 10.1111/ppl.13935 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815249318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815249318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-7ad13e6ed8f49deefbb8f9324537332da8bd9a3f132c4f126f2364213cdc8d743</originalsourceid><addsrcrecordid>eNp1kb1uFTEUhC0EIpdAwQsgSzRQbLL22R-7RBEBpKuQAuqV7_o4cbS2N_Y6aDseIc_Ik-BwkxSROM0U59NoNEPIW1YfsXLH8zwdMZDQPiOborKCum2ek01dA6sksP6AvErpqq5Z1zH-khxAz6SQbb8h8Sz4P79vrb9Ryd4gdcHbJUTrL2gwdAlOLYFeRGUWqlevnB0TzenuvVxidKG85suVKq-pmXKImEb0I9LrrPySHV0tTjpRhyrliA79kl6TF0ZNCd_c6yH5efr5x8nXavv9y7eTT9tqBCHaqleaAXaohWmkRjS7nTASeNNCD8C1EjstFRgGfGwM453h0DWcwahHofsGDsmHve8cw3XGtAzOlnTTpDyGnAYuWMubUo8o6Psn6FXI0Zd0heISBO9YXaiPe2qMIaWIZpijdSquA6uHuyGGMsTwb4jCvrt3zDuH-pF8aL4Ax3vgl51w_b_TcH6-3Vv-BTDOlbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829382610</pqid></control><display><type>article</type><title>Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements</title><source>Wiley Journals</source><creator>Frey, Carlos ; Hernández‐Barriuso, Andrés ; Encina, Antonio ; Acebes, José Luis</creator><creatorcontrib>Frey, Carlos ; Hernández‐Barriuso, Andrés ; Encina, Antonio ; Acebes, José Luis</creatorcontrib><description>Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non‐invasive methods—thermographic inference of transpiration and determination of chlorophyll quantum yields—for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non‐grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from −0.34 ± 0.16 MPa in non‐grafted plants to −0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre‐grafting values at 12–16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionality.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13935</identifier><identifier>PMID: 37198957</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Autografts ; Chlorophyll ; Correlation analysis ; Fluorescence ; Genotypes ; Grafting ; Inference ; Mechanical properties ; Monitoring ; Parameters ; Solanum lycopersicum ; Thermography ; Tomatoes ; Transpiration ; Water potential ; Xylem</subject><ispartof>Physiologia plantarum, 2023-05, Vol.175 (3), p.e13935-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-7ad13e6ed8f49deefbb8f9324537332da8bd9a3f132c4f126f2364213cdc8d743</citedby><cites>FETCH-LOGICAL-c3885-7ad13e6ed8f49deefbb8f9324537332da8bd9a3f132c4f126f2364213cdc8d743</cites><orcidid>0000-0002-0369-5536 ; 0000-0002-1559-1136 ; 0000-0002-0960-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13935$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13935$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37198957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frey, Carlos</creatorcontrib><creatorcontrib>Hernández‐Barriuso, Andrés</creatorcontrib><creatorcontrib>Encina, Antonio</creatorcontrib><creatorcontrib>Acebes, José Luis</creatorcontrib><title>Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non‐invasive methods—thermographic inference of transpiration and determination of chlorophyll quantum yields—for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non‐grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from −0.34 ± 0.16 MPa in non‐grafted plants to −0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre‐grafting values at 12–16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionality.</description><subject>Autografts</subject><subject>Chlorophyll</subject><subject>Correlation analysis</subject><subject>Fluorescence</subject><subject>Genotypes</subject><subject>Grafting</subject><subject>Inference</subject><subject>Mechanical properties</subject><subject>Monitoring</subject><subject>Parameters</subject><subject>Solanum lycopersicum</subject><subject>Thermography</subject><subject>Tomatoes</subject><subject>Transpiration</subject><subject>Water potential</subject><subject>Xylem</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kb1uFTEUhC0EIpdAwQsgSzRQbLL22R-7RBEBpKuQAuqV7_o4cbS2N_Y6aDseIc_Ik-BwkxSROM0U59NoNEPIW1YfsXLH8zwdMZDQPiOborKCum2ek01dA6sksP6AvErpqq5Z1zH-khxAz6SQbb8h8Sz4P79vrb9Ryd4gdcHbJUTrL2gwdAlOLYFeRGUWqlevnB0TzenuvVxidKG85suVKq-pmXKImEb0I9LrrPySHV0tTjpRhyrliA79kl6TF0ZNCd_c6yH5efr5x8nXavv9y7eTT9tqBCHaqleaAXaohWmkRjS7nTASeNNCD8C1EjstFRgGfGwM453h0DWcwahHofsGDsmHve8cw3XGtAzOlnTTpDyGnAYuWMubUo8o6Psn6FXI0Zd0heISBO9YXaiPe2qMIaWIZpijdSquA6uHuyGGMsTwb4jCvrt3zDuH-pF8aL4Ax3vgl51w_b_TcH6-3Vv-BTDOlbQ</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Frey, Carlos</creator><creator>Hernández‐Barriuso, Andrés</creator><creator>Encina, Antonio</creator><creator>Acebes, José Luis</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0369-5536</orcidid><orcidid>https://orcid.org/0000-0002-1559-1136</orcidid><orcidid>https://orcid.org/0000-0002-0960-085X</orcidid></search><sort><creationdate>202305</creationdate><title>Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements</title><author>Frey, Carlos ; Hernández‐Barriuso, Andrés ; Encina, Antonio ; Acebes, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-7ad13e6ed8f49deefbb8f9324537332da8bd9a3f132c4f126f2364213cdc8d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autografts</topic><topic>Chlorophyll</topic><topic>Correlation analysis</topic><topic>Fluorescence</topic><topic>Genotypes</topic><topic>Grafting</topic><topic>Inference</topic><topic>Mechanical properties</topic><topic>Monitoring</topic><topic>Parameters</topic><topic>Solanum lycopersicum</topic><topic>Thermography</topic><topic>Tomatoes</topic><topic>Transpiration</topic><topic>Water potential</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frey, Carlos</creatorcontrib><creatorcontrib>Hernández‐Barriuso, Andrés</creatorcontrib><creatorcontrib>Encina, Antonio</creatorcontrib><creatorcontrib>Acebes, José Luis</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frey, Carlos</au><au>Hernández‐Barriuso, Andrés</au><au>Encina, Antonio</au><au>Acebes, José Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2023-05</date><risdate>2023</risdate><volume>175</volume><issue>3</issue><spage>e13935</spage><epage>n/a</epage><pages>e13935-n/a</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non‐invasive methods—thermographic inference of transpiration and determination of chlorophyll quantum yields—for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non‐grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from −0.34 ± 0.16 MPa in non‐grafted plants to −0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre‐grafting values at 12–16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionality.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>37198957</pmid><doi>10.1111/ppl.13935</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0369-5536</orcidid><orcidid>https://orcid.org/0000-0002-1559-1136</orcidid><orcidid>https://orcid.org/0000-0002-0960-085X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2023-05, Vol.175 (3), p.e13935-n/a |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2815249318 |
source | Wiley Journals |
subjects | Autografts Chlorophyll Correlation analysis Fluorescence Genotypes Grafting Inference Mechanical properties Monitoring Parameters Solanum lycopersicum Thermography Tomatoes Transpiration Water potential Xylem |
title | Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90invasive%20monitoring%20of%20tomato%20graft%20dynamics%20using%20thermography%20and%20fluorescence%20quantum%20yields%20measurements&rft.jtitle=Physiologia%20plantarum&rft.au=Frey,%20Carlos&rft.date=2023-05&rft.volume=175&rft.issue=3&rft.spage=e13935&rft.epage=n/a&rft.pages=e13935-n/a&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13935&rft_dat=%3Cproquest_cross%3E2815249318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829382610&rft_id=info:pmid/37198957&rfr_iscdi=true |