Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial
Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mm...
Gespeichert in:
Veröffentlicht in: | Endocrine 2023-07, Vol.81 (1), p.67-76 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 67 |
container_title | Endocrine |
container_volume | 81 |
creator | Bruhn, Lea Vistisen, Dorte Amadid, Hanan Clemmensen, Kim K. B. Karstoft, Kristian Ried-Larsen, Mathias Persson, Frederik Jørgensen, Marit E. Møller, Cathrine Laustrup Stallknecht, Bente Færch, Kristine Blond, Martin B. |
description | Purpose
To investigate whether the prediction of post-treatment HbA
1c
levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA
1c
.
Methods
We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA
1c
39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m
2
), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA
1c
as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA
1c
. The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit (
R
2
) from the internal validation step in bootstrap-based analysis using general linear models.
Results
The prediction models explained 46–50% of the variation (
R
2
) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol.
R
2
was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model.
Conclusion
Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA
1c
in individuals with HbA
1c
-defined prediabetes. |
doi_str_mv | 10.1007/s12020-023-03384-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815247703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822078195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</originalsourceid><addsrcrecordid>eNp9UV1rFDEUDaJgXf0DPgV88SWaj52drG-lVisUWkp9DpnkppuSTcYks0v9V_5DMx1B8aEQyP04534dhN4y-oFR2n8sjFNOCeWCUCHkmhyfoRPWdVtCW_75P_ZL9KqUe0o555v-BP26zmC9qT7e4boDfDGcMoMDHCBgl0JIxzlzFyaTCpDmQp4DPlbIB4jVp1ia1571B28nHQo--rpbChELzkeweJy76AEqlE9Y4zGVSnbJYB11eCi-YJfT_nGArKNNe_-zkUyKNbcZmnl9c04-45q9Dq_RC9e6wJs__wp9_3J-e3ZBLq--fjs7vSRGUFHJ0PYTzhrNneWGGSt4v2HdlndMM6c5lZJJYQz0YrBCUiEbw9rObNbObeUgVuj9UnfM6ccEpaq9LwZC0BHSVBSXrOPrvm_3XqF3_0Hv05TbajOKc9pLtu0aii8ok1MpGZwas9_r_KAYVbOKalFRNRXVo4rq2EhiIZVxPjzkv6WfYP0GJPejLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822078195</pqid></control><display><type>article</type><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><source>SpringerLink Journals</source><creator>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</creator><creatorcontrib>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</creatorcontrib><description>Purpose
To investigate whether the prediction of post-treatment HbA
1c
levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA
1c
.
Methods
We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA
1c
39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m
2
), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA
1c
as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA
1c
. The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit (
R
2
) from the internal validation step in bootstrap-based analysis using general linear models.
Results
The prediction models explained 46–50% of the variation (
R
2
) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol.
R
2
was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model.
Conclusion
Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA
1c
in individuals with HbA
1c
-defined prediabetes.</description><identifier>ISSN: 1559-0100</identifier><identifier>ISSN: 1355-008X</identifier><identifier>EISSN: 1559-0100</identifier><identifier>DOI: 10.1007/s12020-023-03384-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomarkers ; Body weight ; Diabetes ; Endocrinology ; Fasting ; Glucose ; Glucose metabolism ; Glucose tolerance ; Humanities and Social Sciences ; Insulin ; Internal Medicine ; Laboratory testing ; Medicine ; Medicine & Public Health ; Metabolism ; Metformin ; multidisciplinary ; Original Article ; Overweight ; Plasma ; Prediction models ; Science ; Statistical analysis</subject><ispartof>Endocrine, 2023-07, Vol.81 (1), p.67-76</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</cites><orcidid>0000-0002-2032-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12020-023-03384-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12020-023-03384-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bruhn, Lea</creatorcontrib><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Amadid, Hanan</creatorcontrib><creatorcontrib>Clemmensen, Kim K. B.</creatorcontrib><creatorcontrib>Karstoft, Kristian</creatorcontrib><creatorcontrib>Ried-Larsen, Mathias</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Jørgensen, Marit E.</creatorcontrib><creatorcontrib>Møller, Cathrine Laustrup</creatorcontrib><creatorcontrib>Stallknecht, Bente</creatorcontrib><creatorcontrib>Færch, Kristine</creatorcontrib><creatorcontrib>Blond, Martin B.</creatorcontrib><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><title>Endocrine</title><addtitle>Endocrine</addtitle><description>Purpose
To investigate whether the prediction of post-treatment HbA
1c
levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA
1c
.
Methods
We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA
1c
39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m
2
), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA
1c
as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA
1c
. The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit (
R
2
) from the internal validation step in bootstrap-based analysis using general linear models.
Results
The prediction models explained 46–50% of the variation (
R
2
) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol.
R
2
was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model.
Conclusion
Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA
1c
in individuals with HbA
1c
-defined prediabetes.</description><subject>Biomarkers</subject><subject>Body weight</subject><subject>Diabetes</subject><subject>Endocrinology</subject><subject>Fasting</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Internal Medicine</subject><subject>Laboratory testing</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolism</subject><subject>Metformin</subject><subject>multidisciplinary</subject><subject>Original Article</subject><subject>Overweight</subject><subject>Plasma</subject><subject>Prediction models</subject><subject>Science</subject><subject>Statistical analysis</subject><issn>1559-0100</issn><issn>1355-008X</issn><issn>1559-0100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UV1rFDEUDaJgXf0DPgV88SWaj52drG-lVisUWkp9DpnkppuSTcYks0v9V_5DMx1B8aEQyP04534dhN4y-oFR2n8sjFNOCeWCUCHkmhyfoRPWdVtCW_75P_ZL9KqUe0o555v-BP26zmC9qT7e4boDfDGcMoMDHCBgl0JIxzlzFyaTCpDmQp4DPlbIB4jVp1ia1571B28nHQo--rpbChELzkeweJy76AEqlE9Y4zGVSnbJYB11eCi-YJfT_nGArKNNe_-zkUyKNbcZmnl9c04-45q9Dq_RC9e6wJs__wp9_3J-e3ZBLq--fjs7vSRGUFHJ0PYTzhrNneWGGSt4v2HdlndMM6c5lZJJYQz0YrBCUiEbw9rObNbObeUgVuj9UnfM6ccEpaq9LwZC0BHSVBSXrOPrvm_3XqF3_0Hv05TbajOKc9pLtu0aii8ok1MpGZwas9_r_KAYVbOKalFRNRXVo4rq2EhiIZVxPjzkv6WfYP0GJPejLA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bruhn, Lea</creator><creator>Vistisen, Dorte</creator><creator>Amadid, Hanan</creator><creator>Clemmensen, Kim K. B.</creator><creator>Karstoft, Kristian</creator><creator>Ried-Larsen, Mathias</creator><creator>Persson, Frederik</creator><creator>Jørgensen, Marit E.</creator><creator>Møller, Cathrine Laustrup</creator><creator>Stallknecht, Bente</creator><creator>Færch, Kristine</creator><creator>Blond, Martin B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2032-1560</orcidid></search><sort><creationdate>20230701</creationdate><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><author>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Body weight</topic><topic>Diabetes</topic><topic>Endocrinology</topic><topic>Fasting</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Internal Medicine</topic><topic>Laboratory testing</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolism</topic><topic>Metformin</topic><topic>multidisciplinary</topic><topic>Original Article</topic><topic>Overweight</topic><topic>Plasma</topic><topic>Prediction models</topic><topic>Science</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruhn, Lea</creatorcontrib><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Amadid, Hanan</creatorcontrib><creatorcontrib>Clemmensen, Kim K. B.</creatorcontrib><creatorcontrib>Karstoft, Kristian</creatorcontrib><creatorcontrib>Ried-Larsen, Mathias</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Jørgensen, Marit E.</creatorcontrib><creatorcontrib>Møller, Cathrine Laustrup</creatorcontrib><creatorcontrib>Stallknecht, Bente</creatorcontrib><creatorcontrib>Færch, Kristine</creatorcontrib><creatorcontrib>Blond, Martin B.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruhn, Lea</au><au>Vistisen, Dorte</au><au>Amadid, Hanan</au><au>Clemmensen, Kim K. B.</au><au>Karstoft, Kristian</au><au>Ried-Larsen, Mathias</au><au>Persson, Frederik</au><au>Jørgensen, Marit E.</au><au>Møller, Cathrine Laustrup</au><au>Stallknecht, Bente</au><au>Færch, Kristine</au><au>Blond, Martin B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</atitle><jtitle>Endocrine</jtitle><stitle>Endocrine</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>81</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>1559-0100</issn><issn>1355-008X</issn><eissn>1559-0100</eissn><abstract>Purpose
To investigate whether the prediction of post-treatment HbA
1c
levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA
1c
.
Methods
We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA
1c
39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m
2
), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA
1c
as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA
1c
. The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit (
R
2
) from the internal validation step in bootstrap-based analysis using general linear models.
Results
The prediction models explained 46–50% of the variation (
R
2
) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol.
R
2
was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model.
Conclusion
Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA
1c
in individuals with HbA
1c
-defined prediabetes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12020-023-03384-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2032-1560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-0100 |
ispartof | Endocrine, 2023-07, Vol.81 (1), p.67-76 |
issn | 1559-0100 1355-008X 1559-0100 |
language | eng |
recordid | cdi_proquest_miscellaneous_2815247703 |
source | SpringerLink Journals |
subjects | Biomarkers Body weight Diabetes Endocrinology Fasting Glucose Glucose metabolism Glucose tolerance Humanities and Social Sciences Insulin Internal Medicine Laboratory testing Medicine Medicine & Public Health Metabolism Metformin multidisciplinary Original Article Overweight Plasma Prediction models Science Statistical analysis |
title | Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20HbA1c%20level%20following%20glucose-lowering%20interventions%20in%20individuals%20with%20HbA1c-defined%20prediabetes:%20a%20post-hoc%20analysis%20from%20the%20randomized%20controlled%20PRE-D%20trial&rft.jtitle=Endocrine&rft.au=Bruhn,%20Lea&rft.date=2023-07-01&rft.volume=81&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=1559-0100&rft.eissn=1559-0100&rft_id=info:doi/10.1007/s12020-023-03384-w&rft_dat=%3Cproquest_cross%3E2822078195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822078195&rft_id=info:pmid/&rfr_iscdi=true |