Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial

Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrine 2023-07, Vol.81 (1), p.67-76
Hauptverfasser: Bruhn, Lea, Vistisen, Dorte, Amadid, Hanan, Clemmensen, Kim K. B., Karstoft, Kristian, Ried-Larsen, Mathias, Persson, Frederik, Jørgensen, Marit E., Møller, Cathrine Laustrup, Stallknecht, Bente, Færch, Kristine, Blond, Martin B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 67
container_title Endocrine
container_volume 81
creator Bruhn, Lea
Vistisen, Dorte
Amadid, Hanan
Clemmensen, Kim K. B.
Karstoft, Kristian
Ried-Larsen, Mathias
Persson, Frederik
Jørgensen, Marit E.
Møller, Cathrine Laustrup
Stallknecht, Bente
Færch, Kristine
Blond, Martin B.
description Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m 2 ), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA 1c as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA 1c . The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit ( R 2 ) from the internal validation step in bootstrap-based analysis using general linear models. Results The prediction models explained 46–50% of the variation ( R 2 ) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol. R 2 was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model. Conclusion Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA 1c in individuals with HbA 1c -defined prediabetes.
doi_str_mv 10.1007/s12020-023-03384-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2815247703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822078195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</originalsourceid><addsrcrecordid>eNp9UV1rFDEUDaJgXf0DPgV88SWaj52drG-lVisUWkp9DpnkppuSTcYks0v9V_5DMx1B8aEQyP04534dhN4y-oFR2n8sjFNOCeWCUCHkmhyfoRPWdVtCW_75P_ZL9KqUe0o555v-BP26zmC9qT7e4boDfDGcMoMDHCBgl0JIxzlzFyaTCpDmQp4DPlbIB4jVp1ia1571B28nHQo--rpbChELzkeweJy76AEqlE9Y4zGVSnbJYB11eCi-YJfT_nGArKNNe_-zkUyKNbcZmnl9c04-45q9Dq_RC9e6wJs__wp9_3J-e3ZBLq--fjs7vSRGUFHJ0PYTzhrNneWGGSt4v2HdlndMM6c5lZJJYQz0YrBCUiEbw9rObNbObeUgVuj9UnfM6ccEpaq9LwZC0BHSVBSXrOPrvm_3XqF3_0Hv05TbajOKc9pLtu0aii8ok1MpGZwas9_r_KAYVbOKalFRNRXVo4rq2EhiIZVxPjzkv6WfYP0GJPejLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822078195</pqid></control><display><type>article</type><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><source>SpringerLink Journals</source><creator>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</creator><creatorcontrib>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</creatorcontrib><description>Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m 2 ), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA 1c as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA 1c . The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit ( R 2 ) from the internal validation step in bootstrap-based analysis using general linear models. Results The prediction models explained 46–50% of the variation ( R 2 ) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol. R 2 was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model. Conclusion Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA 1c in individuals with HbA 1c -defined prediabetes.</description><identifier>ISSN: 1559-0100</identifier><identifier>ISSN: 1355-008X</identifier><identifier>EISSN: 1559-0100</identifier><identifier>DOI: 10.1007/s12020-023-03384-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomarkers ; Body weight ; Diabetes ; Endocrinology ; Fasting ; Glucose ; Glucose metabolism ; Glucose tolerance ; Humanities and Social Sciences ; Insulin ; Internal Medicine ; Laboratory testing ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metformin ; multidisciplinary ; Original Article ; Overweight ; Plasma ; Prediction models ; Science ; Statistical analysis</subject><ispartof>Endocrine, 2023-07, Vol.81 (1), p.67-76</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</cites><orcidid>0000-0002-2032-1560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12020-023-03384-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12020-023-03384-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bruhn, Lea</creatorcontrib><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Amadid, Hanan</creatorcontrib><creatorcontrib>Clemmensen, Kim K. B.</creatorcontrib><creatorcontrib>Karstoft, Kristian</creatorcontrib><creatorcontrib>Ried-Larsen, Mathias</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Jørgensen, Marit E.</creatorcontrib><creatorcontrib>Møller, Cathrine Laustrup</creatorcontrib><creatorcontrib>Stallknecht, Bente</creatorcontrib><creatorcontrib>Færch, Kristine</creatorcontrib><creatorcontrib>Blond, Martin B.</creatorcontrib><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><title>Endocrine</title><addtitle>Endocrine</addtitle><description>Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m 2 ), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA 1c as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA 1c . The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit ( R 2 ) from the internal validation step in bootstrap-based analysis using general linear models. Results The prediction models explained 46–50% of the variation ( R 2 ) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol. R 2 was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model. Conclusion Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA 1c in individuals with HbA 1c -defined prediabetes.</description><subject>Biomarkers</subject><subject>Body weight</subject><subject>Diabetes</subject><subject>Endocrinology</subject><subject>Fasting</subject><subject>Glucose</subject><subject>Glucose metabolism</subject><subject>Glucose tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Insulin</subject><subject>Internal Medicine</subject><subject>Laboratory testing</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metformin</subject><subject>multidisciplinary</subject><subject>Original Article</subject><subject>Overweight</subject><subject>Plasma</subject><subject>Prediction models</subject><subject>Science</subject><subject>Statistical analysis</subject><issn>1559-0100</issn><issn>1355-008X</issn><issn>1559-0100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UV1rFDEUDaJgXf0DPgV88SWaj52drG-lVisUWkp9DpnkppuSTcYks0v9V_5DMx1B8aEQyP04534dhN4y-oFR2n8sjFNOCeWCUCHkmhyfoRPWdVtCW_75P_ZL9KqUe0o555v-BP26zmC9qT7e4boDfDGcMoMDHCBgl0JIxzlzFyaTCpDmQp4DPlbIB4jVp1ia1571B28nHQo--rpbChELzkeweJy76AEqlE9Y4zGVSnbJYB11eCi-YJfT_nGArKNNe_-zkUyKNbcZmnl9c04-45q9Dq_RC9e6wJs__wp9_3J-e3ZBLq--fjs7vSRGUFHJ0PYTzhrNneWGGSt4v2HdlndMM6c5lZJJYQz0YrBCUiEbw9rObNbObeUgVuj9UnfM6ccEpaq9LwZC0BHSVBSXrOPrvm_3XqF3_0Hv05TbajOKc9pLtu0aii8ok1MpGZwas9_r_KAYVbOKalFRNRXVo4rq2EhiIZVxPjzkv6WfYP0GJPejLA</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bruhn, Lea</creator><creator>Vistisen, Dorte</creator><creator>Amadid, Hanan</creator><creator>Clemmensen, Kim K. B.</creator><creator>Karstoft, Kristian</creator><creator>Ried-Larsen, Mathias</creator><creator>Persson, Frederik</creator><creator>Jørgensen, Marit E.</creator><creator>Møller, Cathrine Laustrup</creator><creator>Stallknecht, Bente</creator><creator>Færch, Kristine</creator><creator>Blond, Martin B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2032-1560</orcidid></search><sort><creationdate>20230701</creationdate><title>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</title><author>Bruhn, Lea ; Vistisen, Dorte ; Amadid, Hanan ; Clemmensen, Kim K. B. ; Karstoft, Kristian ; Ried-Larsen, Mathias ; Persson, Frederik ; Jørgensen, Marit E. ; Møller, Cathrine Laustrup ; Stallknecht, Bente ; Færch, Kristine ; Blond, Martin B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-b2263fdca2fd2c1cd3276159251a1fa2088183cce73bd38038b22dd5c64ff98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomarkers</topic><topic>Body weight</topic><topic>Diabetes</topic><topic>Endocrinology</topic><topic>Fasting</topic><topic>Glucose</topic><topic>Glucose metabolism</topic><topic>Glucose tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Insulin</topic><topic>Internal Medicine</topic><topic>Laboratory testing</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metformin</topic><topic>multidisciplinary</topic><topic>Original Article</topic><topic>Overweight</topic><topic>Plasma</topic><topic>Prediction models</topic><topic>Science</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruhn, Lea</creatorcontrib><creatorcontrib>Vistisen, Dorte</creatorcontrib><creatorcontrib>Amadid, Hanan</creatorcontrib><creatorcontrib>Clemmensen, Kim K. B.</creatorcontrib><creatorcontrib>Karstoft, Kristian</creatorcontrib><creatorcontrib>Ried-Larsen, Mathias</creatorcontrib><creatorcontrib>Persson, Frederik</creatorcontrib><creatorcontrib>Jørgensen, Marit E.</creatorcontrib><creatorcontrib>Møller, Cathrine Laustrup</creatorcontrib><creatorcontrib>Stallknecht, Bente</creatorcontrib><creatorcontrib>Færch, Kristine</creatorcontrib><creatorcontrib>Blond, Martin B.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruhn, Lea</au><au>Vistisen, Dorte</au><au>Amadid, Hanan</au><au>Clemmensen, Kim K. B.</au><au>Karstoft, Kristian</au><au>Ried-Larsen, Mathias</au><au>Persson, Frederik</au><au>Jørgensen, Marit E.</au><au>Møller, Cathrine Laustrup</au><au>Stallknecht, Bente</au><au>Færch, Kristine</au><au>Blond, Martin B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial</atitle><jtitle>Endocrine</jtitle><stitle>Endocrine</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>81</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>1559-0100</issn><issn>1355-008X</issn><eissn>1559-0100</eissn><abstract>Purpose To investigate whether the prediction of post-treatment HbA 1c levels can be improved by adding an additional biomarker of the glucose metabolism in addition to baseline HbA 1c . Methods We performed an exploratory analysis based on data from 112 individuals with prediabetes (HbA 1c 39–47 mmol) and overweight/obesity (BMI ≥ 25 kg/m 2 ), who completed 13 weeks of glucose-lowering interventions (exercise, dapagliflozin, or metformin) or control (habitual living) in the PRE-D trial. Seven prediction models were tested; one basic model with baseline HbA 1c as the sole glucometabolic marker and six models each containing one additional glucometabolic biomarker in addition to baseline HbA 1c . The additional glucometabolic biomarkers included: 1) plasma fructosamine, 2) fasting plasma glucose, 3) fasting plasma glucose × fasting serum insulin, 4) mean glucose during a 6-day free-living period measured by a continuous glucose monitor 5) mean glucose during an oral glucose tolerance test, and 6) mean plasma glucose × mean serum insulin during the oral glucose tolerance test. The primary outcome was overall goodness of fit ( R 2 ) from the internal validation step in bootstrap-based analysis using general linear models. Results The prediction models explained 46–50% of the variation ( R 2 ) in post-treatment HbA1c with standard deviations of the estimates of ~2 mmol/mol. R 2 was not statistically significantly different in the models containing an additional glucometabolic biomarker when compared to the basic model. Conclusion Adding an additional biomarker of the glucose metabolism did not improve the prediction of post-treatment HbA 1c in individuals with HbA 1c -defined prediabetes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12020-023-03384-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2032-1560</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-0100
ispartof Endocrine, 2023-07, Vol.81 (1), p.67-76
issn 1559-0100
1355-008X
1559-0100
language eng
recordid cdi_proquest_miscellaneous_2815247703
source SpringerLink Journals
subjects Biomarkers
Body weight
Diabetes
Endocrinology
Fasting
Glucose
Glucose metabolism
Glucose tolerance
Humanities and Social Sciences
Insulin
Internal Medicine
Laboratory testing
Medicine
Medicine & Public Health
Metabolism
Metformin
multidisciplinary
Original Article
Overweight
Plasma
Prediction models
Science
Statistical analysis
title Predicting the HbA1c level following glucose-lowering interventions in individuals with HbA1c-defined prediabetes: a post-hoc analysis from the randomized controlled PRE-D trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20HbA1c%20level%20following%20glucose-lowering%20interventions%20in%20individuals%20with%20HbA1c-defined%20prediabetes:%20a%20post-hoc%20analysis%20from%20the%20randomized%20controlled%20PRE-D%20trial&rft.jtitle=Endocrine&rft.au=Bruhn,%20Lea&rft.date=2023-07-01&rft.volume=81&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=1559-0100&rft.eissn=1559-0100&rft_id=info:doi/10.1007/s12020-023-03384-w&rft_dat=%3Cproquest_cross%3E2822078195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822078195&rft_id=info:pmid/&rfr_iscdi=true