Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)
Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development nee...
Gespeichert in:
Veröffentlicht in: | IEEE electron device letters 2005-02, Vol.26 (2), p.84-86 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 2 |
container_start_page | 84 |
container_title | IEEE electron device letters |
container_volume | 26 |
creator | Naeemi, A. Sarvari, R. Meindl, J.D. |
description | Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%. |
doi_str_mv | 10.1109/LED.2004.841440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28148841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1386402</ieee_id><sourcerecordid>896172519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</originalsourceid><addsrcrecordid>eNqNkc1rFEEQxRtRcBM9e8hlCCTqYTbVH9MfxxBjDCwoqOemu6dmmbDbPemeRfzv05sNBHIQT0VRv_eKqkfIBwpLSsFcrK6_LBmAWGpBhYBXZEG7TrfQSf6aLEAJ2nIK8i05KuUOoDJKLMj6B-Yh5a2LAZuQtpPLY0mx8Tj_QYxNcNnXNrqY5p3HxsW-YtOEuRnjjDmkGDHMpakmzXpcuxLcBh9n6-zmsWo_3fy8_fyOvBncpuD7p3pMfn-9_nX1rV19v7m9uly1oaNmbgcaQnBaGdH3wRmjjOfIPeuhV0F6rhR13vdSScM9F8xLI5TvlAShOhY4PyYfD75TTvc7LLPdjiXgZuMipl2x2kiqWN1VyfN_kkxToesv_wMEzZSUFTx9Ad6lXY71XGsoAwXU7N0uDlDIqZSMg53yuHX5r6Vg90HaGqTdB2kPQVbF2ZPt43OHXLMay7NMik4rtV9_cuBGRHwecy0FMP4Ags2l-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912070191</pqid></control><display><type>article</type><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><source>IEEE Electronic Library (IEL)</source><creator>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</creator><creatorcontrib>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</creatorcontrib><description>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2004.841440</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bundles ; CARBON BASE MATERIALS ; Carbon nanotubes ; COMPOSITES ; CONNECTORS (ELECTRICAL) ; Copper ; Design. Technologies. Operation analysis. Testing ; Electronics ; Electrons ; Electrostatics ; Exact sciences and technology ; Inductance ; Integrated circuit interconnections ; Integrated circuits ; Interconnections ; kinetic inductance ; Kinetic theory ; MICROSTRUCTURES ; modeling ; molecular electronics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Particle scattering ; Performance enhancement ; Quantum capacitance ; quantum wires ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; TUBE ; Wave propagation ; Wires</subject><ispartof>IEEE electron device letters, 2005-02, Vol.26 (2), p.84-86</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</citedby><cites>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1386402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1386402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16458776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Naeemi, A.</creatorcontrib><creatorcontrib>Sarvari, R.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</description><subject>Applied sciences</subject><subject>Bundles</subject><subject>CARBON BASE MATERIALS</subject><subject>Carbon nanotubes</subject><subject>COMPOSITES</subject><subject>CONNECTORS (ELECTRICAL)</subject><subject>Copper</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Inductance</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>kinetic inductance</subject><subject>Kinetic theory</subject><subject>MICROSTRUCTURES</subject><subject>modeling</subject><subject>molecular electronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Particle scattering</subject><subject>Performance enhancement</subject><subject>Quantum capacitance</subject><subject>quantum wires</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>TUBE</subject><subject>Wave propagation</subject><subject>Wires</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1rFEEQxRtRcBM9e8hlCCTqYTbVH9MfxxBjDCwoqOemu6dmmbDbPemeRfzv05sNBHIQT0VRv_eKqkfIBwpLSsFcrK6_LBmAWGpBhYBXZEG7TrfQSf6aLEAJ2nIK8i05KuUOoDJKLMj6B-Yh5a2LAZuQtpPLY0mx8Tj_QYxNcNnXNrqY5p3HxsW-YtOEuRnjjDmkGDHMpakmzXpcuxLcBh9n6-zmsWo_3fy8_fyOvBncpuD7p3pMfn-9_nX1rV19v7m9uly1oaNmbgcaQnBaGdH3wRmjjOfIPeuhV0F6rhR13vdSScM9F8xLI5TvlAShOhY4PyYfD75TTvc7LLPdjiXgZuMipl2x2kiqWN1VyfN_kkxToesv_wMEzZSUFTx9Ad6lXY71XGsoAwXU7N0uDlDIqZSMg53yuHX5r6Vg90HaGqTdB2kPQVbF2ZPt43OHXLMay7NMik4rtV9_cuBGRHwecy0FMP4Ags2l-A</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Naeemi, A.</creator><creator>Sarvari, R.</creator><creator>Meindl, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>20050201</creationdate><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><author>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bundles</topic><topic>CARBON BASE MATERIALS</topic><topic>Carbon nanotubes</topic><topic>COMPOSITES</topic><topic>CONNECTORS (ELECTRICAL)</topic><topic>Copper</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Inductance</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>kinetic inductance</topic><topic>Kinetic theory</topic><topic>MICROSTRUCTURES</topic><topic>modeling</topic><topic>molecular electronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Particle scattering</topic><topic>Performance enhancement</topic><topic>Quantum capacitance</topic><topic>quantum wires</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>TUBE</topic><topic>Wave propagation</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naeemi, A.</creatorcontrib><creatorcontrib>Sarvari, R.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naeemi, A.</au><au>Sarvari, R.</au><au>Meindl, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>26</volume><issue>2</issue><spage>84</spage><epage>86</epage><pages>84-86</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2004.841440</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0741-3106 |
ispartof | IEEE electron device letters, 2005-02, Vol.26 (2), p.84-86 |
issn | 0741-3106 1558-0563 |
language | eng |
recordid | cdi_proquest_miscellaneous_28148841 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Bundles CARBON BASE MATERIALS Carbon nanotubes COMPOSITES CONNECTORS (ELECTRICAL) Copper Design. Technologies. Operation analysis. Testing Electronics Electrons Electrostatics Exact sciences and technology Inductance Integrated circuit interconnections Integrated circuits Interconnections kinetic inductance Kinetic theory MICROSTRUCTURES modeling molecular electronics Nanocomposites Nanomaterials Nanostructure Particle scattering Performance enhancement Quantum capacitance quantum wires Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices TUBE Wave propagation Wires |
title | Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20comparison%20between%20carbon%20nanotube%20and%20copper%20interconnects%20for%20gigascale%20integration%20(GSI)&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Naeemi,%20A.&rft.date=2005-02-01&rft.volume=26&rft.issue=2&rft.spage=84&rft.epage=86&rft.pages=84-86&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2004.841440&rft_dat=%3Cproquest_RIE%3E896172519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912070191&rft_id=info:pmid/&rft_ieee_id=1386402&rfr_iscdi=true |