Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)

Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development nee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2005-02, Vol.26 (2), p.84-86
Hauptverfasser: Naeemi, A., Sarvari, R., Meindl, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 2
container_start_page 84
container_title IEEE electron device letters
container_volume 26
creator Naeemi, A.
Sarvari, R.
Meindl, J.D.
description Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.
doi_str_mv 10.1109/LED.2004.841440
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28148841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1386402</ieee_id><sourcerecordid>896172519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</originalsourceid><addsrcrecordid>eNqNkc1rFEEQxRtRcBM9e8hlCCTqYTbVH9MfxxBjDCwoqOemu6dmmbDbPemeRfzv05sNBHIQT0VRv_eKqkfIBwpLSsFcrK6_LBmAWGpBhYBXZEG7TrfQSf6aLEAJ2nIK8i05KuUOoDJKLMj6B-Yh5a2LAZuQtpPLY0mx8Tj_QYxNcNnXNrqY5p3HxsW-YtOEuRnjjDmkGDHMpakmzXpcuxLcBh9n6-zmsWo_3fy8_fyOvBncpuD7p3pMfn-9_nX1rV19v7m9uly1oaNmbgcaQnBaGdH3wRmjjOfIPeuhV0F6rhR13vdSScM9F8xLI5TvlAShOhY4PyYfD75TTvc7LLPdjiXgZuMipl2x2kiqWN1VyfN_kkxToesv_wMEzZSUFTx9Ad6lXY71XGsoAwXU7N0uDlDIqZSMg53yuHX5r6Vg90HaGqTdB2kPQVbF2ZPt43OHXLMay7NMik4rtV9_cuBGRHwecy0FMP4Ags2l-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912070191</pqid></control><display><type>article</type><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><source>IEEE Electronic Library (IEL)</source><creator>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</creator><creatorcontrib>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</creatorcontrib><description>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2004.841440</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bundles ; CARBON BASE MATERIALS ; Carbon nanotubes ; COMPOSITES ; CONNECTORS (ELECTRICAL) ; Copper ; Design. Technologies. Operation analysis. Testing ; Electronics ; Electrons ; Electrostatics ; Exact sciences and technology ; Inductance ; Integrated circuit interconnections ; Integrated circuits ; Interconnections ; kinetic inductance ; Kinetic theory ; MICROSTRUCTURES ; modeling ; molecular electronics ; Nanocomposites ; Nanomaterials ; Nanostructure ; Particle scattering ; Performance enhancement ; Quantum capacitance ; quantum wires ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; TUBE ; Wave propagation ; Wires</subject><ispartof>IEEE electron device letters, 2005-02, Vol.26 (2), p.84-86</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</citedby><cites>FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1386402$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1386402$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16458776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Naeemi, A.</creatorcontrib><creatorcontrib>Sarvari, R.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</description><subject>Applied sciences</subject><subject>Bundles</subject><subject>CARBON BASE MATERIALS</subject><subject>Carbon nanotubes</subject><subject>COMPOSITES</subject><subject>CONNECTORS (ELECTRICAL)</subject><subject>Copper</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Electrostatics</subject><subject>Exact sciences and technology</subject><subject>Inductance</subject><subject>Integrated circuit interconnections</subject><subject>Integrated circuits</subject><subject>Interconnections</subject><subject>kinetic inductance</subject><subject>Kinetic theory</subject><subject>MICROSTRUCTURES</subject><subject>modeling</subject><subject>molecular electronics</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Particle scattering</subject><subject>Performance enhancement</subject><subject>Quantum capacitance</subject><subject>quantum wires</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>TUBE</subject><subject>Wave propagation</subject><subject>Wires</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkc1rFEEQxRtRcBM9e8hlCCTqYTbVH9MfxxBjDCwoqOemu6dmmbDbPemeRfzv05sNBHIQT0VRv_eKqkfIBwpLSsFcrK6_LBmAWGpBhYBXZEG7TrfQSf6aLEAJ2nIK8i05KuUOoDJKLMj6B-Yh5a2LAZuQtpPLY0mx8Tj_QYxNcNnXNrqY5p3HxsW-YtOEuRnjjDmkGDHMpakmzXpcuxLcBh9n6-zmsWo_3fy8_fyOvBncpuD7p3pMfn-9_nX1rV19v7m9uly1oaNmbgcaQnBaGdH3wRmjjOfIPeuhV0F6rhR13vdSScM9F8xLI5TvlAShOhY4PyYfD75TTvc7LLPdjiXgZuMipl2x2kiqWN1VyfN_kkxToesv_wMEzZSUFTx9Ad6lXY71XGsoAwXU7N0uDlDIqZSMg53yuHX5r6Vg90HaGqTdB2kPQVbF2ZPt43OHXLMay7NMik4rtV9_cuBGRHwecy0FMP4Ags2l-A</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Naeemi, A.</creator><creator>Sarvari, R.</creator><creator>Meindl, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope></search><sort><creationdate>20050201</creationdate><title>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</title><author>Naeemi, A. ; Sarvari, R. ; Meindl, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-f1ccca8794ddca9979b3e3b2d0d7c6b3771abbd67693b342b6947b57604752c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bundles</topic><topic>CARBON BASE MATERIALS</topic><topic>Carbon nanotubes</topic><topic>COMPOSITES</topic><topic>CONNECTORS (ELECTRICAL)</topic><topic>Copper</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Electrostatics</topic><topic>Exact sciences and technology</topic><topic>Inductance</topic><topic>Integrated circuit interconnections</topic><topic>Integrated circuits</topic><topic>Interconnections</topic><topic>kinetic inductance</topic><topic>Kinetic theory</topic><topic>MICROSTRUCTURES</topic><topic>modeling</topic><topic>molecular electronics</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Particle scattering</topic><topic>Performance enhancement</topic><topic>Quantum capacitance</topic><topic>quantum wires</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>TUBE</topic><topic>Wave propagation</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naeemi, A.</creatorcontrib><creatorcontrib>Sarvari, R.</creatorcontrib><creatorcontrib>Meindl, J.D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naeemi, A.</au><au>Sarvari, R.</au><au>Meindl, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2005-02-01</date><risdate>2005</risdate><volume>26</volume><issue>2</issue><spage>84</spage><epage>86</epage><pages>84-86</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Physical models are used to determine the ultimate potential performance of carbon nanotube interconnects and compare them with minimum-size copper wires implemented at various technology generations. Results offer important guidance regarding the nature of carbon nanotube technology development needed for improving interconnect performance. Since wave propagation is slow in a single nanotube, nanotube bundles with larger wave speeds must be used. At the 45-nm node (year 2010), the performance enhancement that can be achieved by using nanotube bundles is negligible, and at the 22-nm node (year 2016) it can be as large as 80%.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/LED.2004.841440</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2005-02, Vol.26 (2), p.84-86
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_miscellaneous_28148841
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bundles
CARBON BASE MATERIALS
Carbon nanotubes
COMPOSITES
CONNECTORS (ELECTRICAL)
Copper
Design. Technologies. Operation analysis. Testing
Electronics
Electrons
Electrostatics
Exact sciences and technology
Inductance
Integrated circuit interconnections
Integrated circuits
Interconnections
kinetic inductance
Kinetic theory
MICROSTRUCTURES
modeling
molecular electronics
Nanocomposites
Nanomaterials
Nanostructure
Particle scattering
Performance enhancement
Quantum capacitance
quantum wires
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
TUBE
Wave propagation
Wires
title Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20comparison%20between%20carbon%20nanotube%20and%20copper%20interconnects%20for%20gigascale%20integration%20(GSI)&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Naeemi,%20A.&rft.date=2005-02-01&rft.volume=26&rft.issue=2&rft.spage=84&rft.epage=86&rft.pages=84-86&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2004.841440&rft_dat=%3Cproquest_RIE%3E896172519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912070191&rft_id=info:pmid/&rft_ieee_id=1386402&rfr_iscdi=true