Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame

Flamelet models for turbulent combustion typically employ the assumption of unity Lewis number, i.e., equal thermal and species diffusivities. These models have been employed to predict ignition delay times and ignition location in combusting sprays. However, there is the interesting question: what...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2004-03, Vol.136 (4), p.557-566
Hauptverfasser: Gopalakrishnan, Venkatesh, Abraham, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 4
container_start_page 557
container_title Combustion and flame
container_volume 136
creator Gopalakrishnan, Venkatesh
Abraham, John
description Flamelet models for turbulent combustion typically employ the assumption of unity Lewis number, i.e., equal thermal and species diffusivities. These models have been employed to predict ignition delay times and ignition location in combusting sprays. However, there is the interesting question: what would be the effects of including multicomponent species diffusion on the ignition predictions? In this work, a one-dimensional n-heptane–air diffusion flame is chosen to study the effects of multicomponent diffusion on predicted ignition characteristics. The ambient conditions selected include typical in-cylinder conditions of a medium-duty diesel engine: pressure 10–40 bar and air temperature 850–1000 K. The ignition and oxidation of n-heptane are predicted using a reaction mechanism consisting of 34 species and 56 steps. The mixture fraction is computed separately as a passive species, the diffusion coefficient, of which is equal to the local thermal diffusion coefficient. From these computations, the transient structure of the flamelet, including ignition, is obtained. The results are compared with those obtained with the unity Lewis number assumption. The implications of the unity Lewis number assumption on the predicted ignition characteristics are discussed.
doi_str_mv 10.1016/j.combustflame.2003.12.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28148795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218004000252</els_id><sourcerecordid>28148795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c25853de25e776e40ba021368dfa2f701b305a2c9a13f25312ff971494846bfe3</originalsourceid><addsrcrecordid>eNqNkEtr3TAQhUVpoLdJ_4MppDu7M3r4kV1I0zYQ6KZdC1151Ohiy44kF_rvq5sbaJaBgYHhnDMzH2MfERoEbD8fGrvM-y1lN5mZGg4gGuQNoHzDdqhUW_OB41u2A0CoOfbwjr1P6QAAnRRix_ytc2RzqhZXzduUfclbl0AhV6N3bkt-CVWpNdLobaax8r-Dz8epfTDRlFH0qdieEkyoQv1AazaBXvifjrtgZ85MiT4893P26-vtz5vv9f2Pb3c31_e1lXLIteWqV2IkrqjrWpKwN8BRtP3oDHcd4F6AMtwOBoXjSiB3buhQDrKX7d6ROGefTrlrXB43SlnPPlmapnLTsiXNe5R9N6givDoJbVxSiuT0Gv1s4l-NoI909UG_pKuPdDVyXegW8-XzFpOsmVw0wfr0P0G1incgiu7LSUfl5T-eok7WU7CFZizc9bj416z7B3_RmPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28148795</pqid></control><display><type>article</type><title>Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gopalakrishnan, Venkatesh ; Abraham, John</creator><creatorcontrib>Gopalakrishnan, Venkatesh ; Abraham, John</creatorcontrib><description>Flamelet models for turbulent combustion typically employ the assumption of unity Lewis number, i.e., equal thermal and species diffusivities. These models have been employed to predict ignition delay times and ignition location in combusting sprays. However, there is the interesting question: what would be the effects of including multicomponent species diffusion on the ignition predictions? In this work, a one-dimensional n-heptane–air diffusion flame is chosen to study the effects of multicomponent diffusion on predicted ignition characteristics. The ambient conditions selected include typical in-cylinder conditions of a medium-duty diesel engine: pressure 10–40 bar and air temperature 850–1000 K. The ignition and oxidation of n-heptane are predicted using a reaction mechanism consisting of 34 species and 56 steps. The mixture fraction is computed separately as a passive species, the diffusion coefficient, of which is equal to the local thermal diffusion coefficient. From these computations, the transient structure of the flamelet, including ignition, is obtained. The results are compared with those obtained with the unity Lewis number assumption. The implications of the unity Lewis number assumption on the predicted ignition characteristics are discussed.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2003.12.014</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Combustion of liquid fuels ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Ignition ; Nonpremixed laminar flames ; Theoretical studies. Data and constants. Metering ; Transport properties</subject><ispartof>Combustion and flame, 2004-03, Vol.136 (4), p.557-566</ispartof><rights>2004 The Combustion Institute</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c25853de25e776e40ba021368dfa2f701b305a2c9a13f25312ff971494846bfe3</citedby><cites>FETCH-LOGICAL-c449t-c25853de25e776e40ba021368dfa2f701b305a2c9a13f25312ff971494846bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2003.12.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15652703$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gopalakrishnan, Venkatesh</creatorcontrib><creatorcontrib>Abraham, John</creatorcontrib><title>Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame</title><title>Combustion and flame</title><description>Flamelet models for turbulent combustion typically employ the assumption of unity Lewis number, i.e., equal thermal and species diffusivities. These models have been employed to predict ignition delay times and ignition location in combusting sprays. However, there is the interesting question: what would be the effects of including multicomponent species diffusion on the ignition predictions? In this work, a one-dimensional n-heptane–air diffusion flame is chosen to study the effects of multicomponent diffusion on predicted ignition characteristics. The ambient conditions selected include typical in-cylinder conditions of a medium-duty diesel engine: pressure 10–40 bar and air temperature 850–1000 K. The ignition and oxidation of n-heptane are predicted using a reaction mechanism consisting of 34 species and 56 steps. The mixture fraction is computed separately as a passive species, the diffusion coefficient, of which is equal to the local thermal diffusion coefficient. From these computations, the transient structure of the flamelet, including ignition, is obtained. The results are compared with those obtained with the unity Lewis number assumption. The implications of the unity Lewis number assumption on the predicted ignition characteristics are discussed.</description><subject>Applied sciences</subject><subject>Combustion of liquid fuels</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Ignition</subject><subject>Nonpremixed laminar flames</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Transport properties</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkEtr3TAQhUVpoLdJ_4MppDu7M3r4kV1I0zYQ6KZdC1151Ohiy44kF_rvq5sbaJaBgYHhnDMzH2MfERoEbD8fGrvM-y1lN5mZGg4gGuQNoHzDdqhUW_OB41u2A0CoOfbwjr1P6QAAnRRix_ytc2RzqhZXzduUfclbl0AhV6N3bkt-CVWpNdLobaax8r-Dz8epfTDRlFH0qdieEkyoQv1AazaBXvifjrtgZ85MiT4893P26-vtz5vv9f2Pb3c31_e1lXLIteWqV2IkrqjrWpKwN8BRtP3oDHcd4F6AMtwOBoXjSiB3buhQDrKX7d6ROGefTrlrXB43SlnPPlmapnLTsiXNe5R9N6givDoJbVxSiuT0Gv1s4l-NoI909UG_pKuPdDVyXegW8-XzFpOsmVw0wfr0P0G1incgiu7LSUfl5T-eok7WU7CFZizc9bj416z7B3_RmPU</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Gopalakrishnan, Venkatesh</creator><creator>Abraham, John</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20040301</creationdate><title>Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame</title><author>Gopalakrishnan, Venkatesh ; Abraham, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c25853de25e776e40ba021368dfa2f701b305a2c9a13f25312ff971494846bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Combustion of liquid fuels</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Ignition</topic><topic>Nonpremixed laminar flames</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gopalakrishnan, Venkatesh</creatorcontrib><creatorcontrib>Abraham, John</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopalakrishnan, Venkatesh</au><au>Abraham, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame</atitle><jtitle>Combustion and flame</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>136</volume><issue>4</issue><spage>557</spage><epage>566</epage><pages>557-566</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Flamelet models for turbulent combustion typically employ the assumption of unity Lewis number, i.e., equal thermal and species diffusivities. These models have been employed to predict ignition delay times and ignition location in combusting sprays. However, there is the interesting question: what would be the effects of including multicomponent species diffusion on the ignition predictions? In this work, a one-dimensional n-heptane–air diffusion flame is chosen to study the effects of multicomponent diffusion on predicted ignition characteristics. The ambient conditions selected include typical in-cylinder conditions of a medium-duty diesel engine: pressure 10–40 bar and air temperature 850–1000 K. The ignition and oxidation of n-heptane are predicted using a reaction mechanism consisting of 34 species and 56 steps. The mixture fraction is computed separately as a passive species, the diffusion coefficient, of which is equal to the local thermal diffusion coefficient. From these computations, the transient structure of the flamelet, including ignition, is obtained. The results are compared with those obtained with the unity Lewis number assumption. The implications of the unity Lewis number assumption on the predicted ignition characteristics are discussed.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2003.12.014</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2004-03, Vol.136 (4), p.557-566
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_28148795
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Combustion of liquid fuels
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Ignition
Nonpremixed laminar flames
Theoretical studies. Data and constants. Metering
Transport properties
title Effects of multicomponent diffusion on predicted ignition characteristics of an n-heptane diffusion flame
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A55%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20multicomponent%20diffusion%20on%20predicted%20ignition%20characteristics%20of%20an%20n-heptane%20diffusion%20flame&rft.jtitle=Combustion%20and%20flame&rft.au=Gopalakrishnan,%20Venkatesh&rft.date=2004-03-01&rft.volume=136&rft.issue=4&rft.spage=557&rft.epage=566&rft.pages=557-566&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2003.12.014&rft_dat=%3Cproquest_cross%3E28148795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28148795&rft_id=info:pmid/&rft_els_id=S0010218004000252&rfr_iscdi=true