Electrically tuned coupling of lithium niobate microresonators
Microresonators coupled with integrated waveguides operate stably but usually lack tunability for an optimal coupling state. In this Letter, we demonstrate a racetrack resonator with an electrically modulated coupling on an X-cut lithium niobate (LN) platform by introducing a Mach-Zehnder interferom...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-05, Vol.48 (10), p.2744-2747 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microresonators coupled with integrated waveguides operate stably but usually lack tunability for an optimal coupling state. In this Letter, we demonstrate a racetrack resonator with an electrically modulated coupling on an X-cut lithium niobate (LN) platform by introducing a Mach-Zehnder interferometer (MZI) with two balanced directional couplers (DCs) to realize light exchange. This device provides a wide-range coupling regulation, from under-coupling and critical coupling to deep over-coupling. Importantly, it has a fixed resonance frequency when the DC splitting ratio is 3 dB. The measured optical responses of the resonator exhibit a high extinction ratio, exceeding 23 dB, and an effective half-wave voltage length V
·L of 0.77 V·cm, suitable for CMOS compatibility. Microresonators with tunable coupling and a stable resonance frequency are expected to find application in nonlinear optical devices on LN-integrated optical platforms. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.488974 |