Wavelength-division demultiplexing using graded-index planar structures

In this paper, the authors propose a novel technique for wavelength-division demultiplexing using a graded-index planar structure. The device consists of three layers of the same bulk material: The two outer layers are homogeneous media with refractive indices n/sub 1/ and n/sub 2/, while the inner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2006-06, Vol.24 (6), p.2401-2408
Hauptverfasser: Salameh, H.A.B., Irshid, M.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2408
container_issue 6
container_start_page 2401
container_title Journal of lightwave technology
container_volume 24
creator Salameh, H.A.B.
Irshid, M.I.
description In this paper, the authors propose a novel technique for wavelength-division demultiplexing using a graded-index planar structure. The device consists of three layers of the same bulk material: The two outer layers are homogeneous media with refractive indices n/sub 1/ and n/sub 2/, while the inner layer is an inhomogeneous medium where its refractive index is graded according to a certain profile. The proposed technique exploits the spatial shift that results from the material dispersion found in dispersive media such as silicon dioxide (silica). It is found that the graded-index structure produces a spatial shift that is much higher than that encountered in conventional prisms, provided a certain refractive index profile is chosen. Unlike graded-index fibers, it is found that the value of /spl alpha/ of the refractive index profile (/spl alpha/-profile) for the proposed device must be < 1 to get large spatial dispersion. A mathematical expression for the spatial shift between adjacent wavelengths is found by determining the path profiles followed by the different wavelengths as they propagate through the graded-index layer. Theoretically, it is found that any spatial shift can be obtained by either reducing the value of /spl alpha/ far below 1 for a fixed size of the structure or increasing the size of the structure for a fixed value of /spl alpha/.
doi_str_mv 10.1109/JLT.2006.874589
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28141867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1643799</ieee_id><sourcerecordid>28141867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e68d99292c9d559e0dbb9dbf5f50586cce97506e3955f3983ec8e99cdbfe07503</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYMoWKtnD16KoLdtk81mkzmKaFUKXioeQ5rM1pTtbk12S_33prQgeJk5zPfePB4h14yOGaMweZvNxzml5VjJQig4IQMmhMrynPFTMqCS80zJvDgnFzGuKGVFoeSATD_NFmtslt1X5vzWR982I4frvu78psadb5ajPu7nMhiHLvONw91oU5vGhFHsQm-7PmC8JGeVqSNeHfeQfDw_zR9fstn79PXxYZZZXkCXYakcQA65BScEIHWLBbhFJSpBhSqtRZCClshBiIqD4mgVAtiEIE0XPiT3B99NaL97jJ1e-2ixTnmw7aPOFSuYKmUCb_-Bq7YPTcqmVVlSmkCVoMkBsqGNMWClN8GvTfjRjOp9qzq1qvet6kOrSXF3tDXRmroKprE-_smkksDy_fubA-cR8e9cFlwC8F_6N4Ds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866002818</pqid></control><display><type>article</type><title>Wavelength-division demultiplexing using graded-index planar structures</title><source>IEEE Electronic Library (IEL)</source><creator>Salameh, H.A.B. ; Irshid, M.I.</creator><creatorcontrib>Salameh, H.A.B. ; Irshid, M.I.</creatorcontrib><description>In this paper, the authors propose a novel technique for wavelength-division demultiplexing using a graded-index planar structure. The device consists of three layers of the same bulk material: The two outer layers are homogeneous media with refractive indices n/sub 1/ and n/sub 2/, while the inner layer is an inhomogeneous medium where its refractive index is graded according to a certain profile. The proposed technique exploits the spatial shift that results from the material dispersion found in dispersive media such as silicon dioxide (silica). It is found that the graded-index structure produces a spatial shift that is much higher than that encountered in conventional prisms, provided a certain refractive index profile is chosen. Unlike graded-index fibers, it is found that the value of /spl alpha/ of the refractive index profile (/spl alpha/-profile) for the proposed device must be &lt; 1 to get large spatial dispersion. A mathematical expression for the spatial shift between adjacent wavelengths is found by determining the path profiles followed by the different wavelengths as they propagate through the graded-index layer. Theoretically, it is found that any spatial shift can be obtained by either reducing the value of /spl alpha/ far below 1 for a fixed size of the structure or increasing the size of the structure for a fixed value of /spl alpha/.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2006.874589</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrayed waveguide gratings ; Bandwidth ; Beamwidth ; Circuit properties ; Demultiplexing ; Dispersion ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; graded-index ; Information, signal and communications theory ; Integrated optics. Optical fibers and wave guides ; Multiplexing ; Nonhomogeneous media ; Optical and optoelectronic circuits ; Optical fiber filters ; Optical filters ; Optical waveguides ; Refractive index ; Signal and communications theory ; Studies ; Telecommunications and information theory ; Wavelength division multiplexing ; WDM</subject><ispartof>Journal of lightwave technology, 2006-06, Vol.24 (6), p.2401-2408</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e68d99292c9d559e0dbb9dbf5f50586cce97506e3955f3983ec8e99cdbfe07503</citedby><cites>FETCH-LOGICAL-c349t-e68d99292c9d559e0dbb9dbf5f50586cce97506e3955f3983ec8e99cdbfe07503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1643799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1643799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17879127$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Salameh, H.A.B.</creatorcontrib><creatorcontrib>Irshid, M.I.</creatorcontrib><title>Wavelength-division demultiplexing using graded-index planar structures</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, the authors propose a novel technique for wavelength-division demultiplexing using a graded-index planar structure. The device consists of three layers of the same bulk material: The two outer layers are homogeneous media with refractive indices n/sub 1/ and n/sub 2/, while the inner layer is an inhomogeneous medium where its refractive index is graded according to a certain profile. The proposed technique exploits the spatial shift that results from the material dispersion found in dispersive media such as silicon dioxide (silica). It is found that the graded-index structure produces a spatial shift that is much higher than that encountered in conventional prisms, provided a certain refractive index profile is chosen. Unlike graded-index fibers, it is found that the value of /spl alpha/ of the refractive index profile (/spl alpha/-profile) for the proposed device must be &lt; 1 to get large spatial dispersion. A mathematical expression for the spatial shift between adjacent wavelengths is found by determining the path profiles followed by the different wavelengths as they propagate through the graded-index layer. Theoretically, it is found that any spatial shift can be obtained by either reducing the value of /spl alpha/ far below 1 for a fixed size of the structure or increasing the size of the structure for a fixed value of /spl alpha/.</description><subject>Applied sciences</subject><subject>Arrayed waveguide gratings</subject><subject>Bandwidth</subject><subject>Beamwidth</subject><subject>Circuit properties</subject><subject>Demultiplexing</subject><subject>Dispersion</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>graded-index</subject><subject>Information, signal and communications theory</subject><subject>Integrated optics. Optical fibers and wave guides</subject><subject>Multiplexing</subject><subject>Nonhomogeneous media</subject><subject>Optical and optoelectronic circuits</subject><subject>Optical fiber filters</subject><subject>Optical filters</subject><subject>Optical waveguides</subject><subject>Refractive index</subject><subject>Signal and communications theory</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Wavelength division multiplexing</subject><subject>WDM</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLAzEQhYMoWKtnD16KoLdtk81mkzmKaFUKXioeQ5rM1pTtbk12S_33prQgeJk5zPfePB4h14yOGaMweZvNxzml5VjJQig4IQMmhMrynPFTMqCS80zJvDgnFzGuKGVFoeSATD_NFmtslt1X5vzWR982I4frvu78psadb5ajPu7nMhiHLvONw91oU5vGhFHsQm-7PmC8JGeVqSNeHfeQfDw_zR9fstn79PXxYZZZXkCXYakcQA65BScEIHWLBbhFJSpBhSqtRZCClshBiIqD4mgVAtiEIE0XPiT3B99NaL97jJ1e-2ixTnmw7aPOFSuYKmUCb_-Bq7YPTcqmVVlSmkCVoMkBsqGNMWClN8GvTfjRjOp9qzq1qvet6kOrSXF3tDXRmroKprE-_smkksDy_fubA-cR8e9cFlwC8F_6N4Ds</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Salameh, H.A.B.</creator><creator>Irshid, M.I.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20060601</creationdate><title>Wavelength-division demultiplexing using graded-index planar structures</title><author>Salameh, H.A.B. ; Irshid, M.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e68d99292c9d559e0dbb9dbf5f50586cce97506e3955f3983ec8e99cdbfe07503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Arrayed waveguide gratings</topic><topic>Bandwidth</topic><topic>Beamwidth</topic><topic>Circuit properties</topic><topic>Demultiplexing</topic><topic>Dispersion</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>graded-index</topic><topic>Information, signal and communications theory</topic><topic>Integrated optics. Optical fibers and wave guides</topic><topic>Multiplexing</topic><topic>Nonhomogeneous media</topic><topic>Optical and optoelectronic circuits</topic><topic>Optical fiber filters</topic><topic>Optical filters</topic><topic>Optical waveguides</topic><topic>Refractive index</topic><topic>Signal and communications theory</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Wavelength division multiplexing</topic><topic>WDM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salameh, H.A.B.</creatorcontrib><creatorcontrib>Irshid, M.I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Salameh, H.A.B.</au><au>Irshid, M.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelength-division demultiplexing using graded-index planar structures</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>24</volume><issue>6</issue><spage>2401</spage><epage>2408</epage><pages>2401-2408</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, the authors propose a novel technique for wavelength-division demultiplexing using a graded-index planar structure. The device consists of three layers of the same bulk material: The two outer layers are homogeneous media with refractive indices n/sub 1/ and n/sub 2/, while the inner layer is an inhomogeneous medium where its refractive index is graded according to a certain profile. The proposed technique exploits the spatial shift that results from the material dispersion found in dispersive media such as silicon dioxide (silica). It is found that the graded-index structure produces a spatial shift that is much higher than that encountered in conventional prisms, provided a certain refractive index profile is chosen. Unlike graded-index fibers, it is found that the value of /spl alpha/ of the refractive index profile (/spl alpha/-profile) for the proposed device must be &lt; 1 to get large spatial dispersion. A mathematical expression for the spatial shift between adjacent wavelengths is found by determining the path profiles followed by the different wavelengths as they propagate through the graded-index layer. Theoretically, it is found that any spatial shift can be obtained by either reducing the value of /spl alpha/ far below 1 for a fixed size of the structure or increasing the size of the structure for a fixed value of /spl alpha/.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JLT.2006.874589</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2006-06, Vol.24 (6), p.2401-2408
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_miscellaneous_28141867
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrayed waveguide gratings
Bandwidth
Beamwidth
Circuit properties
Demultiplexing
Dispersion
Electric, optical and optoelectronic circuits
Electronics
Exact sciences and technology
graded-index
Information, signal and communications theory
Integrated optics. Optical fibers and wave guides
Multiplexing
Nonhomogeneous media
Optical and optoelectronic circuits
Optical fiber filters
Optical filters
Optical waveguides
Refractive index
Signal and communications theory
Studies
Telecommunications and information theory
Wavelength division multiplexing
WDM
title Wavelength-division demultiplexing using graded-index planar structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelength-division%20demultiplexing%20using%20graded-index%20planar%20structures&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Salameh,%20H.A.B.&rft.date=2006-06-01&rft.volume=24&rft.issue=6&rft.spage=2401&rft.epage=2408&rft.pages=2401-2408&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2006.874589&rft_dat=%3Cproquest_RIE%3E28141867%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866002818&rft_id=info:pmid/&rft_ieee_id=1643799&rfr_iscdi=true