Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device

Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High‐power density supercapacitors and high‐energy density rechargeable batteries are some of the most effective devices, while lithium‐ion batteries (LIBs) are the most common. Due to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-08, Vol.19 (34), p.e2301815-n/a
Hauptverfasser: Zhang, Yuming, Yuan, Zeyu, Zhao, Lianjia, Li, Yilin, Qin, Xiaokun, Li, Junzhi, Han, Wei, Wang, Lili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page e2301815
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Yuming
Yuan, Zeyu
Zhao, Lianjia
Li, Yilin
Qin, Xiaokun
Li, Junzhi
Han, Wei
Wang, Lili
description Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High‐power density supercapacitors and high‐energy density rechargeable batteries are some of the most effective devices, while lithium‐ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium‐ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene‐based composites in various kinds of magnesium‐ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research. MXene‐based magnesium‐ion energy storage device aims to discuss the preparation strategies of MXene with different dimensions and structural properties. Recent advancements of MXene‐based complexes, including their energy storage mechanisms in electrochemical magnesium‐ion storage applications, focus on a systematic discussion and analysis of supercapacitors, magnesium‐ion batteries, magnesium–lithium hybrid ion batteries, and magnesium–sulfur batteries.
doi_str_mv 10.1002/smll.202301815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813890001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813890001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-3098cc848d6df21bf21cfcd1dc54b6ff3e9f884491a9d82ada23d0e9bcc1fe3d3</originalsourceid><addsrcrecordid>eNqFkM9OAjEQhxujEUWvHs0mXrws9s8utEeDqCQQE1DjbbO0U1Kyu8WWhXDzEXxGn8QSEBMvHprpTL_50vwQuiC4RTCmN74sihbFlGHCSXqATkibsLjNqTjc3wluoFPvZxgzQpPOMWqwDuGMYXaCXkewNLCKrI7uwJtpFY1svTAV-M1o-AYVRMN8Ac7khY-0daGbhldTl18fn31bRb0K3HQdjRfW5VMIlqWRcIaOdFiA811topf73nP3MR48PfS7t4NYsg5LY4YFl5InXLWVpmQSjtRSESXTZNLWmoHQnCeJILlQnOYqp0xhEBMpiQamWBNdb71zZ99r8IusNF5CUeQV2NpnlBPGBcaYBPTqDzqztavC7wKVJqJDU4ED1dpS0lnvHehs7kyZu3VGcLZJPNsknu0TDwuXO209KUHt8Z-IAyC2wMoUsP5Hl42Hg8Gv_Bvmg44J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854972590</pqid></control><display><type>article</type><title>Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device</title><source>Access via Wiley Online Library</source><creator>Zhang, Yuming ; Yuan, Zeyu ; Zhao, Lianjia ; Li, Yilin ; Qin, Xiaokun ; Li, Junzhi ; Han, Wei ; Wang, Lili</creator><creatorcontrib>Zhang, Yuming ; Yuan, Zeyu ; Zhao, Lianjia ; Li, Yilin ; Qin, Xiaokun ; Li, Junzhi ; Han, Wei ; Wang, Lili</creatorcontrib><description>Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High‐power density supercapacitors and high‐energy density rechargeable batteries are some of the most effective devices, while lithium‐ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium‐ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene‐based composites in various kinds of magnesium‐ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research. MXene‐based magnesium‐ion energy storage device aims to discuss the preparation strategies of MXene with different dimensions and structural properties. Recent advancements of MXene‐based complexes, including their energy storage mechanisms in electrochemical magnesium‐ion storage applications, focus on a systematic discussion and analysis of supercapacitors, magnesium‐ion batteries, magnesium–lithium hybrid ion batteries, and magnesium–sulfur batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301815</identifier><identifier>PMID: 37183303</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Composite materials ; composites ; design ; Devices ; Electrode materials ; Electrodes ; Energy storage ; high‐performance ; Ion adsorption ; Ion storage ; Lithium-ion batteries ; Magnesium ; magnesium‐ion energy storage devices ; MXene materials ; MXenes ; Nanotechnology ; Rechargeable batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (34), p.e2301815-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-3098cc848d6df21bf21cfcd1dc54b6ff3e9f884491a9d82ada23d0e9bcc1fe3d3</citedby><cites>FETCH-LOGICAL-c3735-3098cc848d6df21bf21cfcd1dc54b6ff3e9f884491a9d82ada23d0e9bcc1fe3d3</cites><orcidid>0000-0002-4830-3487 ; 0000-0002-0422-4277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202301815$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202301815$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37183303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Yuan, Zeyu</creatorcontrib><creatorcontrib>Zhao, Lianjia</creatorcontrib><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Qin, Xiaokun</creatorcontrib><creatorcontrib>Li, Junzhi</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><title>Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High‐power density supercapacitors and high‐energy density rechargeable batteries are some of the most effective devices, while lithium‐ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium‐ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene‐based composites in various kinds of magnesium‐ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research. MXene‐based magnesium‐ion energy storage device aims to discuss the preparation strategies of MXene with different dimensions and structural properties. Recent advancements of MXene‐based complexes, including their energy storage mechanisms in electrochemical magnesium‐ion storage applications, focus on a systematic discussion and analysis of supercapacitors, magnesium‐ion batteries, magnesium–lithium hybrid ion batteries, and magnesium–sulfur batteries.</description><subject>Batteries</subject><subject>Composite materials</subject><subject>composites</subject><subject>design</subject><subject>Devices</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>high‐performance</subject><subject>Ion adsorption</subject><subject>Ion storage</subject><subject>Lithium-ion batteries</subject><subject>Magnesium</subject><subject>magnesium‐ion energy storage devices</subject><subject>MXene materials</subject><subject>MXenes</subject><subject>Nanotechnology</subject><subject>Rechargeable batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM9OAjEQhxujEUWvHs0mXrws9s8utEeDqCQQE1DjbbO0U1Kyu8WWhXDzEXxGn8QSEBMvHprpTL_50vwQuiC4RTCmN74sihbFlGHCSXqATkibsLjNqTjc3wluoFPvZxgzQpPOMWqwDuGMYXaCXkewNLCKrI7uwJtpFY1svTAV-M1o-AYVRMN8Ac7khY-0daGbhldTl18fn31bRb0K3HQdjRfW5VMIlqWRcIaOdFiA811topf73nP3MR48PfS7t4NYsg5LY4YFl5InXLWVpmQSjtRSESXTZNLWmoHQnCeJILlQnOYqp0xhEBMpiQamWBNdb71zZ99r8IusNF5CUeQV2NpnlBPGBcaYBPTqDzqztavC7wKVJqJDU4ED1dpS0lnvHehs7kyZu3VGcLZJPNsknu0TDwuXO209KUHt8Z-IAyC2wMoUsP5Hl42Hg8Gv_Bvmg44J</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Yuming</creator><creator>Yuan, Zeyu</creator><creator>Zhao, Lianjia</creator><creator>Li, Yilin</creator><creator>Qin, Xiaokun</creator><creator>Li, Junzhi</creator><creator>Han, Wei</creator><creator>Wang, Lili</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4830-3487</orcidid><orcidid>https://orcid.org/0000-0002-0422-4277</orcidid></search><sort><creationdate>20230801</creationdate><title>Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device</title><author>Zhang, Yuming ; Yuan, Zeyu ; Zhao, Lianjia ; Li, Yilin ; Qin, Xiaokun ; Li, Junzhi ; Han, Wei ; Wang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-3098cc848d6df21bf21cfcd1dc54b6ff3e9f884491a9d82ada23d0e9bcc1fe3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Batteries</topic><topic>Composite materials</topic><topic>composites</topic><topic>design</topic><topic>Devices</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>high‐performance</topic><topic>Ion adsorption</topic><topic>Ion storage</topic><topic>Lithium-ion batteries</topic><topic>Magnesium</topic><topic>magnesium‐ion energy storage devices</topic><topic>MXene materials</topic><topic>MXenes</topic><topic>Nanotechnology</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuming</creatorcontrib><creatorcontrib>Yuan, Zeyu</creatorcontrib><creatorcontrib>Zhao, Lianjia</creatorcontrib><creatorcontrib>Li, Yilin</creatorcontrib><creatorcontrib>Qin, Xiaokun</creatorcontrib><creatorcontrib>Li, Junzhi</creatorcontrib><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuming</au><au>Yuan, Zeyu</au><au>Zhao, Lianjia</au><au>Li, Yilin</au><au>Qin, Xiaokun</au><au>Li, Junzhi</au><au>Han, Wei</au><au>Wang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>19</volume><issue>34</issue><spage>e2301815</spage><epage>n/a</epage><pages>e2301815-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High‐power density supercapacitors and high‐energy density rechargeable batteries are some of the most effective devices, while lithium‐ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium‐ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene‐based composites in various kinds of magnesium‐ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research. MXene‐based magnesium‐ion energy storage device aims to discuss the preparation strategies of MXene with different dimensions and structural properties. Recent advancements of MXene‐based complexes, including their energy storage mechanisms in electrochemical magnesium‐ion storage applications, focus on a systematic discussion and analysis of supercapacitors, magnesium‐ion batteries, magnesium–lithium hybrid ion batteries, and magnesium–sulfur batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37183303</pmid><doi>10.1002/smll.202301815</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-4830-3487</orcidid><orcidid>https://orcid.org/0000-0002-0422-4277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-08, Vol.19 (34), p.e2301815-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2813890001
source Access via Wiley Online Library
subjects Batteries
Composite materials
composites
design
Devices
Electrode materials
Electrodes
Energy storage
high‐performance
Ion adsorption
Ion storage
Lithium-ion batteries
Magnesium
magnesium‐ion energy storage devices
MXene materials
MXenes
Nanotechnology
Rechargeable batteries
title Review of Design Routines of MXene Materials for Magnesium‐Ion Energy Storage Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Design%20Routines%20of%20MXene%20Materials%20for%20Magnesium%E2%80%90Ion%20Energy%20Storage%20Device&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yuming&rft.date=2023-08-01&rft.volume=19&rft.issue=34&rft.spage=e2301815&rft.epage=n/a&rft.pages=e2301815-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301815&rft_dat=%3Cproquest_cross%3E2813890001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2854972590&rft_id=info:pmid/37183303&rfr_iscdi=true