Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling

•A high-fat diet induced downregulation of intestinal multidrug resistance transporter 1 (Mdr-1).•High-fat diet–induced Mdr-1downregulation had negative outcomes for its barrier function.•Tumor necrosis factor α signaling played a role in Mdr-1 downregulation induced by a high-fat diet.•Impairment o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrition (Burbank, Los Angeles County, Calif.) Los Angeles County, Calif.), 2023-07, Vol.111, p.112050-112050, Article 112050
Hauptverfasser: Barranco, María Manuela, Perdomo, Virginia Gabriela, Zecchinati, Felipe, Manarin, Romina, Massuh, Greta, Sigal, Nicolás, Vignaduzzo, Silvana, Mottino, Aldo Domingo, Villanueva, Silvina Stella Maris, García, Fabiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112050
container_issue
container_start_page 112050
container_title Nutrition (Burbank, Los Angeles County, Calif.)
container_volume 111
creator Barranco, María Manuela
Perdomo, Virginia Gabriela
Zecchinati, Felipe
Manarin, Romina
Massuh, Greta
Sigal, Nicolás
Vignaduzzo, Silvana
Mottino, Aldo Domingo
Villanueva, Silvina Stella Maris
García, Fabiana
description •A high-fat diet induced downregulation of intestinal multidrug resistance transporter 1 (Mdr-1).•High-fat diet–induced Mdr-1downregulation had negative outcomes for its barrier function.•Tumor necrosis factor α signaling played a role in Mdr-1 downregulation induced by a high-fat diet.•Impairment of the Mdr-1 barrier function may have consequences for drug bioavailability. Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1–dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.
doi_str_mv 10.1016/j.nut.2023.112050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813563865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0899900723000801</els_id><sourcerecordid>2813563865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3240-4be42dc95707307131468eaaa4f523beaa245d0d9a06f675711b9c07c33fc0303</originalsourceid><addsrcrecordid>eNqFkbGO1DAQhi0E4paDB6BBlmhosszYSZxAhY47QDpBc9SW40xWXmXtxXZAPAgPwovwTDjsQUEBlV18843m_xl7jLBFwPb5fuuXvBUg5BZRQAN32AY7JSsUdX2XbaDr-6oHUGfsQUp7AMC-7e-zM6lQibqpN-zb6_DFR9ots8kueB4m7nymlJ03Mz8sc3ZjXHY8UnIpG2-J52h8OoaYKXIsNA8DJeIHZ-kFv5wmspkXk8uJDyZGV7Bp8faX3viRxzDTuufm_VX143sxWzrmsLqS25Wtzu8esnuTmRM9un3P2cery5uLt9X1hzfvLl5dV1aKGqp6oFqMtm8UKAkKJdZtR8aYemqEHMqvHDnC2Btop1Y1CnHoLSgr5WRBgjxnz07eYwyflnK1PrhkaZ6Np7AkLbGRHUrVyv-ionBNK7u2KejTv9B9WGK5bKUEtlKJvisUnigbQ0qRJn2M7mDiV42g13r1Xpd69VqvPtVbZp7cmpfhQOOfid99FuDlCaCS2ucSvU7WUWltdCXnrMfg_qH_Cb0wtf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821637298</pqid></control><display><type>article</type><title>Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Barranco, María Manuela ; Perdomo, Virginia Gabriela ; Zecchinati, Felipe ; Manarin, Romina ; Massuh, Greta ; Sigal, Nicolás ; Vignaduzzo, Silvana ; Mottino, Aldo Domingo ; Villanueva, Silvina Stella Maris ; García, Fabiana</creator><creatorcontrib>Barranco, María Manuela ; Perdomo, Virginia Gabriela ; Zecchinati, Felipe ; Manarin, Romina ; Massuh, Greta ; Sigal, Nicolás ; Vignaduzzo, Silvana ; Mottino, Aldo Domingo ; Villanueva, Silvina Stella Maris ; García, Fabiana</creatorcontrib><description>•A high-fat diet induced downregulation of intestinal multidrug resistance transporter 1 (Mdr-1).•High-fat diet–induced Mdr-1downregulation had negative outcomes for its barrier function.•Tumor necrosis factor α signaling played a role in Mdr-1 downregulation induced by a high-fat diet.•Impairment of the Mdr-1 barrier function may have consequences for drug bioavailability. Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1–dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.</description><identifier>ISSN: 0899-9007</identifier><identifier>EISSN: 1873-1244</identifier><identifier>DOI: 10.1016/j.nut.2023.112050</identifier><identifier>PMID: 37172454</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>absorption ; analysis of variance ; Animals ; Bioavailability ; Cytokines ; Diet ; Diet, High-Fat ; Down-Regulation ; Drug resistance ; Drug Resistance, Multiple ; Enzyme-linked immunosorbent assay ; Enzymes ; Gene expression ; genes ; Glucose ; High fat diet ; Immunohistochemistry ; Inflammation ; Inflammatory response ; Insulin resistance ; Intestine ; intestines ; Laboratory animals ; Male ; males ; Mdr-1 ; Metabolic disorders ; Metabolic syndrome ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Multidrug resistance ; Multidrug resistant organisms ; multiple drug resistance ; Obesity ; Oral administration ; P-Glycoprotein ; Polymerase chain reaction ; protein synthesis ; Proteins ; quantitative polymerase chain reaction ; Receptors ; Rhodamine ; Rhodamine 123 ; rhodamines ; RNA, Messenger ; Signal transduction ; Signaling ; Small intestine ; Substrates ; t-test ; TNFR1 ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α ; tumor necrosis factors ; Variance analysis ; Western blotting</subject><ispartof>Nutrition (Burbank, Los Angeles County, Calif.), 2023-07, Vol.111, p.112050-112050, Article 112050</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><rights>2023. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3240-4be42dc95707307131468eaaa4f523beaa245d0d9a06f675711b9c07c33fc0303</cites><orcidid>0000-0002-1217-5428 ; 0000-0002-1115-1715 ; 0000-0003-1226-4858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0899900723000801$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37172454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barranco, María Manuela</creatorcontrib><creatorcontrib>Perdomo, Virginia Gabriela</creatorcontrib><creatorcontrib>Zecchinati, Felipe</creatorcontrib><creatorcontrib>Manarin, Romina</creatorcontrib><creatorcontrib>Massuh, Greta</creatorcontrib><creatorcontrib>Sigal, Nicolás</creatorcontrib><creatorcontrib>Vignaduzzo, Silvana</creatorcontrib><creatorcontrib>Mottino, Aldo Domingo</creatorcontrib><creatorcontrib>Villanueva, Silvina Stella Maris</creatorcontrib><creatorcontrib>García, Fabiana</creatorcontrib><title>Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling</title><title>Nutrition (Burbank, Los Angeles County, Calif.)</title><addtitle>Nutrition</addtitle><description>•A high-fat diet induced downregulation of intestinal multidrug resistance transporter 1 (Mdr-1).•High-fat diet–induced Mdr-1downregulation had negative outcomes for its barrier function.•Tumor necrosis factor α signaling played a role in Mdr-1 downregulation induced by a high-fat diet.•Impairment of the Mdr-1 barrier function may have consequences for drug bioavailability. Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1–dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.</description><subject>absorption</subject><subject>analysis of variance</subject><subject>Animals</subject><subject>Bioavailability</subject><subject>Cytokines</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Down-Regulation</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple</subject><subject>Enzyme-linked immunosorbent assay</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>genes</subject><subject>Glucose</subject><subject>High fat diet</subject><subject>Immunohistochemistry</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Insulin resistance</subject><subject>Intestine</subject><subject>intestines</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>males</subject><subject>Mdr-1</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Obese</subject><subject>Multidrug resistance</subject><subject>Multidrug resistant organisms</subject><subject>multiple drug resistance</subject><subject>Obesity</subject><subject>Oral administration</subject><subject>P-Glycoprotein</subject><subject>Polymerase chain reaction</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>quantitative polymerase chain reaction</subject><subject>Receptors</subject><subject>Rhodamine</subject><subject>Rhodamine 123</subject><subject>rhodamines</subject><subject>RNA, Messenger</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Small intestine</subject><subject>Substrates</subject><subject>t-test</subject><subject>TNFR1</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><subject>tumor necrosis factors</subject><subject>Variance analysis</subject><subject>Western blotting</subject><issn>0899-9007</issn><issn>1873-1244</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkbGO1DAQhi0E4paDB6BBlmhosszYSZxAhY47QDpBc9SW40xWXmXtxXZAPAgPwovwTDjsQUEBlV18843m_xl7jLBFwPb5fuuXvBUg5BZRQAN32AY7JSsUdX2XbaDr-6oHUGfsQUp7AMC-7e-zM6lQibqpN-zb6_DFR9ots8kueB4m7nymlJ03Mz8sc3ZjXHY8UnIpG2-J52h8OoaYKXIsNA8DJeIHZ-kFv5wmspkXk8uJDyZGV7Bp8faX3viRxzDTuufm_VX143sxWzrmsLqS25Wtzu8esnuTmRM9un3P2cery5uLt9X1hzfvLl5dV1aKGqp6oFqMtm8UKAkKJdZtR8aYemqEHMqvHDnC2Btop1Y1CnHoLSgr5WRBgjxnz07eYwyflnK1PrhkaZ6Np7AkLbGRHUrVyv-ionBNK7u2KejTv9B9WGK5bKUEtlKJvisUnigbQ0qRJn2M7mDiV42g13r1Xpd69VqvPtVbZp7cmpfhQOOfid99FuDlCaCS2ucSvU7WUWltdCXnrMfg_qH_Cb0wtf0</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Barranco, María Manuela</creator><creator>Perdomo, Virginia Gabriela</creator><creator>Zecchinati, Felipe</creator><creator>Manarin, Romina</creator><creator>Massuh, Greta</creator><creator>Sigal, Nicolás</creator><creator>Vignaduzzo, Silvana</creator><creator>Mottino, Aldo Domingo</creator><creator>Villanueva, Silvina Stella Maris</creator><creator>García, Fabiana</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1217-5428</orcidid><orcidid>https://orcid.org/0000-0002-1115-1715</orcidid><orcidid>https://orcid.org/0000-0003-1226-4858</orcidid></search><sort><creationdate>202307</creationdate><title>Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling</title><author>Barranco, María Manuela ; Perdomo, Virginia Gabriela ; Zecchinati, Felipe ; Manarin, Romina ; Massuh, Greta ; Sigal, Nicolás ; Vignaduzzo, Silvana ; Mottino, Aldo Domingo ; Villanueva, Silvina Stella Maris ; García, Fabiana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3240-4be42dc95707307131468eaaa4f523beaa245d0d9a06f675711b9c07c33fc0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>absorption</topic><topic>analysis of variance</topic><topic>Animals</topic><topic>Bioavailability</topic><topic>Cytokines</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Down-Regulation</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple</topic><topic>Enzyme-linked immunosorbent assay</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>genes</topic><topic>Glucose</topic><topic>High fat diet</topic><topic>Immunohistochemistry</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Insulin resistance</topic><topic>Intestine</topic><topic>intestines</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>males</topic><topic>Mdr-1</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Obese</topic><topic>Multidrug resistance</topic><topic>Multidrug resistant organisms</topic><topic>multiple drug resistance</topic><topic>Obesity</topic><topic>Oral administration</topic><topic>P-Glycoprotein</topic><topic>Polymerase chain reaction</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>quantitative polymerase chain reaction</topic><topic>Receptors</topic><topic>Rhodamine</topic><topic>Rhodamine 123</topic><topic>rhodamines</topic><topic>RNA, Messenger</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Small intestine</topic><topic>Substrates</topic><topic>t-test</topic><topic>TNFR1</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><topic>tumor necrosis factors</topic><topic>Variance analysis</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barranco, María Manuela</creatorcontrib><creatorcontrib>Perdomo, Virginia Gabriela</creatorcontrib><creatorcontrib>Zecchinati, Felipe</creatorcontrib><creatorcontrib>Manarin, Romina</creatorcontrib><creatorcontrib>Massuh, Greta</creatorcontrib><creatorcontrib>Sigal, Nicolás</creatorcontrib><creatorcontrib>Vignaduzzo, Silvana</creatorcontrib><creatorcontrib>Mottino, Aldo Domingo</creatorcontrib><creatorcontrib>Villanueva, Silvina Stella Maris</creatorcontrib><creatorcontrib>García, Fabiana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barranco, María Manuela</au><au>Perdomo, Virginia Gabriela</au><au>Zecchinati, Felipe</au><au>Manarin, Romina</au><au>Massuh, Greta</au><au>Sigal, Nicolás</au><au>Vignaduzzo, Silvana</au><au>Mottino, Aldo Domingo</au><au>Villanueva, Silvina Stella Maris</au><au>García, Fabiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling</atitle><jtitle>Nutrition (Burbank, Los Angeles County, Calif.)</jtitle><addtitle>Nutrition</addtitle><date>2023-07</date><risdate>2023</risdate><volume>111</volume><spage>112050</spage><epage>112050</epage><pages>112050-112050</pages><artnum>112050</artnum><issn>0899-9007</issn><eissn>1873-1244</eissn><abstract>•A high-fat diet induced downregulation of intestinal multidrug resistance transporter 1 (Mdr-1).•High-fat diet–induced Mdr-1downregulation had negative outcomes for its barrier function.•Tumor necrosis factor α signaling played a role in Mdr-1 downregulation induced by a high-fat diet.•Impairment of the Mdr-1 barrier function may have consequences for drug bioavailability. Multidrug resistance transporter 1 (Mdr-1) is a relevant component of the intestinal transcellular barrier that decreases absorption of oral drugs, thus modulating their bioavailability. Obese patients with metabolic disorders take medications that are subjected to intestinal metabolism and the Mdr-1–dependent barrier. This study evaluated the effect of a high-fat diet (HFD; 40% fat for 16 wk) on Mdr-1 expression and transport activity in C57BL/6 (C57) male mice. Comparable studies were performed in tumor necrosis factor α (TNF-α) receptor 1 knockout mice (R1KO) to delineate a possible role of TNF-α signaling. mRNA expression was evaluated by real-time polymerase chain reaction and protein levels by western blotting and immunohistochemistry. Mdr-1 activity was assessed using the everted intestinal sac model, with rhodamine 123 as the substrate. Statistical comparisons were made using the Student t test or one-way analysis of variance followed by the post hoc Tukey test. Mdr-1 protein, as well as its corresponding Mdr1a and Mdr1b mRNA, was decreased in C57-HFD mice compared with controls. Immunohistochemical studies confirmed downregulation of Mdr-1 in situ. These results correlated with a 48% decrease in the basolateral to apical transport of rhodamine 123. In contrast, R1KO-HFD modified neither intestinal Mdr-1 mRNA nor its protein expression or activity. In addition, C57-HFD showed elevated intestinal TNF-α mRNA and protein (enzyme-linked immunosorbent assay) levels, whereas R1KO-HFD was undetectable or had a lower increase, respectively. This study demonstrated an impairment of the Mdr-1 intestinal barrier function induced by HFD as a consequence of downregulation of both Mdr-1 gene homologues, resulting in impaired Mdr-1 protein expression. Inflammatory response mediated by TNF-α receptor 1 signaling was likely involved.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37172454</pmid><doi>10.1016/j.nut.2023.112050</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1217-5428</orcidid><orcidid>https://orcid.org/0000-0002-1115-1715</orcidid><orcidid>https://orcid.org/0000-0003-1226-4858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-9007
ispartof Nutrition (Burbank, Los Angeles County, Calif.), 2023-07, Vol.111, p.112050-112050, Article 112050
issn 0899-9007
1873-1244
language eng
recordid cdi_proquest_miscellaneous_2813563865
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects absorption
analysis of variance
Animals
Bioavailability
Cytokines
Diet
Diet, High-Fat
Down-Regulation
Drug resistance
Drug Resistance, Multiple
Enzyme-linked immunosorbent assay
Enzymes
Gene expression
genes
Glucose
High fat diet
Immunohistochemistry
Inflammation
Inflammatory response
Insulin resistance
Intestine
intestines
Laboratory animals
Male
males
Mdr-1
Metabolic disorders
Metabolic syndrome
Mice
Mice, Inbred C57BL
Mice, Obese
Multidrug resistance
Multidrug resistant organisms
multiple drug resistance
Obesity
Oral administration
P-Glycoprotein
Polymerase chain reaction
protein synthesis
Proteins
quantitative polymerase chain reaction
Receptors
Rhodamine
Rhodamine 123
rhodamines
RNA, Messenger
Signal transduction
Signaling
Small intestine
Substrates
t-test
TNFR1
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumor necrosis factor-α
tumor necrosis factors
Variance analysis
Western blotting
title Downregulation of intestinal multidrug resistance transporter 1 in obese mice: Effect on its barrier function and role of TNF-α receptor 1 signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20intestinal%20multidrug%20resistance%20transporter%201%20in%20obese%20mice:%20Effect%20on%20its%20barrier%20function%20and%20role%20of%20TNF-%CE%B1%20receptor%201%20signaling&rft.jtitle=Nutrition%20(Burbank,%20Los%20Angeles%20County,%20Calif.)&rft.au=Barranco,%20Mar%C3%ADa%20Manuela&rft.date=2023-07&rft.volume=111&rft.spage=112050&rft.epage=112050&rft.pages=112050-112050&rft.artnum=112050&rft.issn=0899-9007&rft.eissn=1873-1244&rft_id=info:doi/10.1016/j.nut.2023.112050&rft_dat=%3Cproquest_cross%3E2813563865%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821637298&rft_id=info:pmid/37172454&rft_els_id=S0899900723000801&rfr_iscdi=true