Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation

Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2023-08, Vol.455, p.131530-131530, Article 131530
Hauptverfasser: Lee, Sangbin, Anwer, Hassan, Park, Jae–Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131530
container_issue
container_start_page 131530
container_title Journal of hazardous materials
container_volume 455
creator Lee, Sangbin
Anwer, Hassan
Park, Jae–Woo
description Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen peroxide rather than recombining due to additional oxygen atoms supplied by the nanobubbles. The generated hydrogen peroxide formed hydroperoxyl ions that reacted with ozone to generate hydroxyl radicals. The process achieved improvements in both the loss of emitted ozone and radical recombination. Rhodamine B decomposition was used to gauge the effectiveness of the process, with the highest rhodamine B decomposition evident at a high initial pH and power and a frequency of 132 kHz as revealed in ultrasonic experiments. The process achieved more than 99% of the rhodamine B decomposition in 20 min under the most efficient conditions. The generation of hydrogen peroxide exhibited tendencies similar to those of rhodamine B decomposition, supporting the proposed mechanism. An ozonation process combined with nanobubble and ultrasonic cavitation can therefore sustain oxidizing power using continuous dissolution by nanobubbles and successive radical generation caused by hydrogen peroxide generated by cavitation. [Display omitted] •Nanobubbles reduced ozone release into the atmosphere.•Ultrasonic cavitation broke the nanobubbles and increased the gas transfer.•Ultrasonic cavitation promoted ozone consumption through hydrogen peroxide production.•Nanobubbles increase the production of hydrogen peroxide by supplying oxygen.
doi_str_mv 10.1016/j.jhazmat.2023.131530
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813557138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389423008130</els_id><sourcerecordid>2813557138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e2854f79b938bd3b4d34af57cab78e49897f148ed45e41f5981303fddc4334973</originalsourceid><addsrcrecordid>eNqFkMFOGzEQhq2qqKShjwDysZcN9o4de3tBFYKChMgFzpbXnlUdbezU3k1bnp5NE3rlNIf5_vk1HyHnnC0448vL9WL9075s7LCoWQ0LDlwC-0BmXCuoAGD5kcwYMFGBbsQp-VzKmjHGlRSfyCkormrQYkZWqz_B2yHskG7Tb8y0T6VQl-KQU09DpOklxWmf4jf6aGNqx7btkdro6dgP2ZYUg6PO7sLwjzojJ53tC345zjl5vr15ur6rHlY_7q-_P1QOlnKosNZSdKppG9Cth1Z4ELaTytlWaRSNblTHhUYvJAreyUZzYNB57wSAaBTMydfD3W1Ov0Ysg9mE4rDvbcQ0FlNPASkVBz2h8oC6PP2WsTPbHDY2_zWcmb1LszZHl2bv0hxcTrmLY8XYbtD_T73Jm4CrA4DTo7uA2RQXMDr0IaMbjE_hnYpXQmeIUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813557138</pqid></control><display><type>article</type><title>Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lee, Sangbin ; Anwer, Hassan ; Park, Jae–Woo</creator><creatorcontrib>Lee, Sangbin ; Anwer, Hassan ; Park, Jae–Woo</creatorcontrib><description>Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen peroxide rather than recombining due to additional oxygen atoms supplied by the nanobubbles. The generated hydrogen peroxide formed hydroperoxyl ions that reacted with ozone to generate hydroxyl radicals. The process achieved improvements in both the loss of emitted ozone and radical recombination. Rhodamine B decomposition was used to gauge the effectiveness of the process, with the highest rhodamine B decomposition evident at a high initial pH and power and a frequency of 132 kHz as revealed in ultrasonic experiments. The process achieved more than 99% of the rhodamine B decomposition in 20 min under the most efficient conditions. The generation of hydrogen peroxide exhibited tendencies similar to those of rhodamine B decomposition, supporting the proposed mechanism. An ozonation process combined with nanobubble and ultrasonic cavitation can therefore sustain oxidizing power using continuous dissolution by nanobubbles and successive radical generation caused by hydrogen peroxide generated by cavitation. [Display omitted] •Nanobubbles reduced ozone release into the atmosphere.•Ultrasonic cavitation broke the nanobubbles and increased the gas transfer.•Ultrasonic cavitation promoted ozone consumption through hydrogen peroxide production.•Nanobubbles increase the production of hydrogen peroxide by supplying oxygen.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2023.131530</identifier><identifier>PMID: 37172384</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Hydrogen peroxide ; Nanobubbles ; Ozonation ; Ultrasonic cavitation</subject><ispartof>Journal of hazardous materials, 2023-08, Vol.455, p.131530-131530, Article 131530</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e2854f79b938bd3b4d34af57cab78e49897f148ed45e41f5981303fddc4334973</citedby><cites>FETCH-LOGICAL-c365t-e2854f79b938bd3b4d34af57cab78e49897f148ed45e41f5981303fddc4334973</cites><orcidid>0000-0002-9304-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jhazmat.2023.131530$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37172384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sangbin</creatorcontrib><creatorcontrib>Anwer, Hassan</creatorcontrib><creatorcontrib>Park, Jae–Woo</creatorcontrib><title>Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen peroxide rather than recombining due to additional oxygen atoms supplied by the nanobubbles. The generated hydrogen peroxide formed hydroperoxyl ions that reacted with ozone to generate hydroxyl radicals. The process achieved improvements in both the loss of emitted ozone and radical recombination. Rhodamine B decomposition was used to gauge the effectiveness of the process, with the highest rhodamine B decomposition evident at a high initial pH and power and a frequency of 132 kHz as revealed in ultrasonic experiments. The process achieved more than 99% of the rhodamine B decomposition in 20 min under the most efficient conditions. The generation of hydrogen peroxide exhibited tendencies similar to those of rhodamine B decomposition, supporting the proposed mechanism. An ozonation process combined with nanobubble and ultrasonic cavitation can therefore sustain oxidizing power using continuous dissolution by nanobubbles and successive radical generation caused by hydrogen peroxide generated by cavitation. [Display omitted] •Nanobubbles reduced ozone release into the atmosphere.•Ultrasonic cavitation broke the nanobubbles and increased the gas transfer.•Ultrasonic cavitation promoted ozone consumption through hydrogen peroxide production.•Nanobubbles increase the production of hydrogen peroxide by supplying oxygen.</description><subject>Hydrogen peroxide</subject><subject>Nanobubbles</subject><subject>Ozonation</subject><subject>Ultrasonic cavitation</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOGzEQhq2qqKShjwDysZcN9o4de3tBFYKChMgFzpbXnlUdbezU3k1bnp5NE3rlNIf5_vk1HyHnnC0448vL9WL9075s7LCoWQ0LDlwC-0BmXCuoAGD5kcwYMFGBbsQp-VzKmjHGlRSfyCkormrQYkZWqz_B2yHskG7Tb8y0T6VQl-KQU09DpOklxWmf4jf6aGNqx7btkdro6dgP2ZYUg6PO7sLwjzojJ53tC345zjl5vr15ur6rHlY_7q-_P1QOlnKosNZSdKppG9Cth1Z4ELaTytlWaRSNblTHhUYvJAreyUZzYNB57wSAaBTMydfD3W1Ov0Ysg9mE4rDvbcQ0FlNPASkVBz2h8oC6PP2WsTPbHDY2_zWcmb1LszZHl2bv0hxcTrmLY8XYbtD_T73Jm4CrA4DTo7uA2RQXMDr0IaMbjE_hnYpXQmeIUA</recordid><startdate>20230805</startdate><enddate>20230805</enddate><creator>Lee, Sangbin</creator><creator>Anwer, Hassan</creator><creator>Park, Jae–Woo</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9304-9772</orcidid></search><sort><creationdate>20230805</creationdate><title>Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation</title><author>Lee, Sangbin ; Anwer, Hassan ; Park, Jae–Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e2854f79b938bd3b4d34af57cab78e49897f148ed45e41f5981303fddc4334973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Hydrogen peroxide</topic><topic>Nanobubbles</topic><topic>Ozonation</topic><topic>Ultrasonic cavitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangbin</creatorcontrib><creatorcontrib>Anwer, Hassan</creatorcontrib><creatorcontrib>Park, Jae–Woo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangbin</au><au>Anwer, Hassan</au><au>Park, Jae–Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2023-08-05</date><risdate>2023</risdate><volume>455</volume><spage>131530</spage><epage>131530</epage><pages>131530-131530</pages><artnum>131530</artnum><issn>0304-3894</issn><eissn>1873-3336</eissn><abstract>Nanobubble and ultrasonic cavitation were applied to support and prolong oxidation reactions of ozonation. Nanobubbles increased ozone dissolution by a factor of 16 due to low buoyancy, high surface area, and stability in water. Hydroxyl radicals generated by ultrasonic cavitation produced hydrogen peroxide rather than recombining due to additional oxygen atoms supplied by the nanobubbles. The generated hydrogen peroxide formed hydroperoxyl ions that reacted with ozone to generate hydroxyl radicals. The process achieved improvements in both the loss of emitted ozone and radical recombination. Rhodamine B decomposition was used to gauge the effectiveness of the process, with the highest rhodamine B decomposition evident at a high initial pH and power and a frequency of 132 kHz as revealed in ultrasonic experiments. The process achieved more than 99% of the rhodamine B decomposition in 20 min under the most efficient conditions. The generation of hydrogen peroxide exhibited tendencies similar to those of rhodamine B decomposition, supporting the proposed mechanism. An ozonation process combined with nanobubble and ultrasonic cavitation can therefore sustain oxidizing power using continuous dissolution by nanobubbles and successive radical generation caused by hydrogen peroxide generated by cavitation. [Display omitted] •Nanobubbles reduced ozone release into the atmosphere.•Ultrasonic cavitation broke the nanobubbles and increased the gas transfer.•Ultrasonic cavitation promoted ozone consumption through hydrogen peroxide production.•Nanobubbles increase the production of hydrogen peroxide by supplying oxygen.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37172384</pmid><doi>10.1016/j.jhazmat.2023.131530</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9304-9772</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2023-08, Vol.455, p.131530-131530, Article 131530
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_2813557138
source ScienceDirect Journals (5 years ago - present)
subjects Hydrogen peroxide
Nanobubbles
Ozonation
Ultrasonic cavitation
title Oxidative power loss control in ozonation: Nanobubble and ultrasonic cavitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20power%20loss%20control%20in%20ozonation:%20Nanobubble%20and%20ultrasonic%20cavitation&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Lee,%20Sangbin&rft.date=2023-08-05&rft.volume=455&rft.spage=131530&rft.epage=131530&rft.pages=131530-131530&rft.artnum=131530&rft.issn=0304-3894&rft.eissn=1873-3336&rft_id=info:doi/10.1016/j.jhazmat.2023.131530&rft_dat=%3Cproquest_cross%3E2813557138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813557138&rft_id=info:pmid/37172384&rft_els_id=S0304389423008130&rfr_iscdi=true