Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This pro...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2023-04, Vol.130 (17), p.171403-171403, Article 171403 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171403 |
---|---|
container_issue | 17 |
container_start_page | 171403 |
container_title | Physical review letters |
container_volume | 130 |
creator | Dax, Maximilian Green, Stephen R Gair, Jonathan Pürrer, Michael Wildberger, Jonas Macke, Jakob H Buonanno, Alessandra Schölkopf, Bernhard |
description | We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications. |
doi_str_mv | 10.1103/PhysRevLett.130.171403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813556219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</originalsourceid><addsrcrecordid>eNpNkF1Lw0AQRRdRbK3-hZJHX1JndpPd7KMUrYVSpSo-hu1mopF8uZsU-u-NtIpPF4Z75sJhbIowQwRx8_Sx9xvarajrZiiGo8IIxAkbIygdKsTolI0BBIYaQI3YhfefAIBcJudsJBQqzqN4zNZr6p0pg2XVNq4ztaXg2VRtWdTvQd64YGPaIgtMnQUbKguzLSlYOLMrOtMVTW3K8M3sKFjWOTka4Et2lpvS09UxJ-z1_u5l_hCuHhfL-e0qtCLWXZhJSIALrUFzitDEnHIBsZaWMNtyEDKRkVKJlXqLUSRtjpYoQRVbEDqTYsKuD39b13z15Lu0KrylsjQ1Nb1PeYIijiVHPVTloWpd472jPG1dURm3TxHSH5fpP5fp4DI9uBzA6XGj31aU_WG_8sQ33opxrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813556219</pqid></control><display><type>article</type><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</creator><creatorcontrib>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</creatorcontrib><description>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.130.171403</identifier><identifier>PMID: 37172245</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2023-04, Vol.130 (17), p.171403-171403, Article 171403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</citedby><cites>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</cites><orcidid>0000-0002-3433-5920 ; 0000-0001-5154-8912 ; 0000-0002-6987-6313 ; 0000-0002-5433-1409 ; 0000-0002-1671-3668 ; 0000-0002-8177-0925 ; 0000-0001-8798-0627 ; 0000-0002-3329-9788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37172245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dax, Maximilian</creatorcontrib><creatorcontrib>Green, Stephen R</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Pürrer, Michael</creatorcontrib><creatorcontrib>Wildberger, Jonas</creatorcontrib><creatorcontrib>Macke, Jakob H</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF1Lw0AQRRdRbK3-hZJHX1JndpPd7KMUrYVSpSo-hu1mopF8uZsU-u-NtIpPF4Z75sJhbIowQwRx8_Sx9xvarajrZiiGo8IIxAkbIygdKsTolI0BBIYaQI3YhfefAIBcJudsJBQqzqN4zNZr6p0pg2XVNq4ztaXg2VRtWdTvQd64YGPaIgtMnQUbKguzLSlYOLMrOtMVTW3K8M3sKFjWOTka4Et2lpvS09UxJ-z1_u5l_hCuHhfL-e0qtCLWXZhJSIALrUFzitDEnHIBsZaWMNtyEDKRkVKJlXqLUSRtjpYoQRVbEDqTYsKuD39b13z15Lu0KrylsjQ1Nb1PeYIijiVHPVTloWpd472jPG1dURm3TxHSH5fpP5fp4DI9uBzA6XGj31aU_WG_8sQ33opxrQ</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Dax, Maximilian</creator><creator>Green, Stephen R</creator><creator>Gair, Jonathan</creator><creator>Pürrer, Michael</creator><creator>Wildberger, Jonas</creator><creator>Macke, Jakob H</creator><creator>Buonanno, Alessandra</creator><creator>Schölkopf, Bernhard</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3433-5920</orcidid><orcidid>https://orcid.org/0000-0001-5154-8912</orcidid><orcidid>https://orcid.org/0000-0002-6987-6313</orcidid><orcidid>https://orcid.org/0000-0002-5433-1409</orcidid><orcidid>https://orcid.org/0000-0002-1671-3668</orcidid><orcidid>https://orcid.org/0000-0002-8177-0925</orcidid><orcidid>https://orcid.org/0000-0001-8798-0627</orcidid><orcidid>https://orcid.org/0000-0002-3329-9788</orcidid></search><sort><creationdate>20230428</creationdate><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><author>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dax, Maximilian</creatorcontrib><creatorcontrib>Green, Stephen R</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Pürrer, Michael</creatorcontrib><creatorcontrib>Wildberger, Jonas</creatorcontrib><creatorcontrib>Macke, Jakob H</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dax, Maximilian</au><au>Green, Stephen R</au><au>Gair, Jonathan</au><au>Pürrer, Michael</au><au>Wildberger, Jonas</au><au>Macke, Jakob H</au><au>Buonanno, Alessandra</au><au>Schölkopf, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>130</volume><issue>17</issue><spage>171403</spage><epage>171403</epage><pages>171403-171403</pages><artnum>171403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</abstract><cop>United States</cop><pmid>37172245</pmid><doi>10.1103/PhysRevLett.130.171403</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3433-5920</orcidid><orcidid>https://orcid.org/0000-0001-5154-8912</orcidid><orcidid>https://orcid.org/0000-0002-6987-6313</orcidid><orcidid>https://orcid.org/0000-0002-5433-1409</orcidid><orcidid>https://orcid.org/0000-0002-1671-3668</orcidid><orcidid>https://orcid.org/0000-0002-8177-0925</orcidid><orcidid>https://orcid.org/0000-0001-8798-0627</orcidid><orcidid>https://orcid.org/0000-0002-3329-9788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2023-04, Vol.130 (17), p.171403-171403, Article 171403 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2813556219 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Importance%20Sampling%20for%20Rapid%20and%20Reliable%20Gravitational-Wave%20Inference&rft.jtitle=Physical%20review%20letters&rft.au=Dax,%20Maximilian&rft.date=2023-04-28&rft.volume=130&rft.issue=17&rft.spage=171403&rft.epage=171403&rft.pages=171403-171403&rft.artnum=171403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.130.171403&rft_dat=%3Cproquest_cross%3E2813556219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813556219&rft_id=info:pmid/37172245&rfr_iscdi=true |