Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference

We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-04, Vol.130 (17), p.171403-171403, Article 171403
Hauptverfasser: Dax, Maximilian, Green, Stephen R, Gair, Jonathan, Pürrer, Michael, Wildberger, Jonas, Macke, Jakob H, Buonanno, Alessandra, Schölkopf, Bernhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171403
container_issue 17
container_start_page 171403
container_title Physical review letters
container_volume 130
creator Dax, Maximilian
Green, Stephen R
Gair, Jonathan
Pürrer, Michael
Wildberger, Jonas
Macke, Jakob H
Buonanno, Alessandra
Schölkopf, Bernhard
description We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.
doi_str_mv 10.1103/PhysRevLett.130.171403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2813556219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813556219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</originalsourceid><addsrcrecordid>eNpNkF1Lw0AQRRdRbK3-hZJHX1JndpPd7KMUrYVSpSo-hu1mopF8uZsU-u-NtIpPF4Z75sJhbIowQwRx8_Sx9xvarajrZiiGo8IIxAkbIygdKsTolI0BBIYaQI3YhfefAIBcJudsJBQqzqN4zNZr6p0pg2XVNq4ztaXg2VRtWdTvQd64YGPaIgtMnQUbKguzLSlYOLMrOtMVTW3K8M3sKFjWOTka4Et2lpvS09UxJ-z1_u5l_hCuHhfL-e0qtCLWXZhJSIALrUFzitDEnHIBsZaWMNtyEDKRkVKJlXqLUSRtjpYoQRVbEDqTYsKuD39b13z15Lu0KrylsjQ1Nb1PeYIijiVHPVTloWpd472jPG1dURm3TxHSH5fpP5fp4DI9uBzA6XGj31aU_WG_8sQ33opxrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813556219</pqid></control><display><type>article</type><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</creator><creatorcontrib>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</creatorcontrib><description>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.130.171403</identifier><identifier>PMID: 37172245</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2023-04, Vol.130 (17), p.171403-171403, Article 171403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</citedby><cites>FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</cites><orcidid>0000-0002-3433-5920 ; 0000-0001-5154-8912 ; 0000-0002-6987-6313 ; 0000-0002-5433-1409 ; 0000-0002-1671-3668 ; 0000-0002-8177-0925 ; 0000-0001-8798-0627 ; 0000-0002-3329-9788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37172245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dax, Maximilian</creatorcontrib><creatorcontrib>Green, Stephen R</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Pürrer, Michael</creatorcontrib><creatorcontrib>Wildberger, Jonas</creatorcontrib><creatorcontrib>Macke, Jakob H</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF1Lw0AQRRdRbK3-hZJHX1JndpPd7KMUrYVSpSo-hu1mopF8uZsU-u-NtIpPF4Z75sJhbIowQwRx8_Sx9xvarajrZiiGo8IIxAkbIygdKsTolI0BBIYaQI3YhfefAIBcJudsJBQqzqN4zNZr6p0pg2XVNq4ztaXg2VRtWdTvQd64YGPaIgtMnQUbKguzLSlYOLMrOtMVTW3K8M3sKFjWOTka4Et2lpvS09UxJ-z1_u5l_hCuHhfL-e0qtCLWXZhJSIALrUFzitDEnHIBsZaWMNtyEDKRkVKJlXqLUSRtjpYoQRVbEDqTYsKuD39b13z15Lu0KrylsjQ1Nb1PeYIijiVHPVTloWpd472jPG1dURm3TxHSH5fpP5fp4DI9uBzA6XGj31aU_WG_8sQ33opxrQ</recordid><startdate>20230428</startdate><enddate>20230428</enddate><creator>Dax, Maximilian</creator><creator>Green, Stephen R</creator><creator>Gair, Jonathan</creator><creator>Pürrer, Michael</creator><creator>Wildberger, Jonas</creator><creator>Macke, Jakob H</creator><creator>Buonanno, Alessandra</creator><creator>Schölkopf, Bernhard</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3433-5920</orcidid><orcidid>https://orcid.org/0000-0001-5154-8912</orcidid><orcidid>https://orcid.org/0000-0002-6987-6313</orcidid><orcidid>https://orcid.org/0000-0002-5433-1409</orcidid><orcidid>https://orcid.org/0000-0002-1671-3668</orcidid><orcidid>https://orcid.org/0000-0002-8177-0925</orcidid><orcidid>https://orcid.org/0000-0001-8798-0627</orcidid><orcidid>https://orcid.org/0000-0002-3329-9788</orcidid></search><sort><creationdate>20230428</creationdate><title>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</title><author>Dax, Maximilian ; Green, Stephen R ; Gair, Jonathan ; Pürrer, Michael ; Wildberger, Jonas ; Macke, Jakob H ; Buonanno, Alessandra ; Schölkopf, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d60802399092e41a52ef30596ce1db2036864778c69b1446cf1cee8175c039d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dax, Maximilian</creatorcontrib><creatorcontrib>Green, Stephen R</creatorcontrib><creatorcontrib>Gair, Jonathan</creatorcontrib><creatorcontrib>Pürrer, Michael</creatorcontrib><creatorcontrib>Wildberger, Jonas</creatorcontrib><creatorcontrib>Macke, Jakob H</creatorcontrib><creatorcontrib>Buonanno, Alessandra</creatorcontrib><creatorcontrib>Schölkopf, Bernhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dax, Maximilian</au><au>Green, Stephen R</au><au>Gair, Jonathan</au><au>Pürrer, Michael</au><au>Wildberger, Jonas</au><au>Macke, Jakob H</au><au>Buonanno, Alessandra</au><au>Schölkopf, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2023-04-28</date><risdate>2023</risdate><volume>130</volume><issue>17</issue><spage>171403</spage><epage>171403</epage><pages>171403-171403</pages><artnum>171403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.</abstract><cop>United States</cop><pmid>37172245</pmid><doi>10.1103/PhysRevLett.130.171403</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3433-5920</orcidid><orcidid>https://orcid.org/0000-0001-5154-8912</orcidid><orcidid>https://orcid.org/0000-0002-6987-6313</orcidid><orcidid>https://orcid.org/0000-0002-5433-1409</orcidid><orcidid>https://orcid.org/0000-0002-1671-3668</orcidid><orcidid>https://orcid.org/0000-0002-8177-0925</orcidid><orcidid>https://orcid.org/0000-0001-8798-0627</orcidid><orcidid>https://orcid.org/0000-0002-3329-9788</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2023-04, Vol.130 (17), p.171403-171403, Article 171403
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2813556219
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A22%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Importance%20Sampling%20for%20Rapid%20and%20Reliable%20Gravitational-Wave%20Inference&rft.jtitle=Physical%20review%20letters&rft.au=Dax,%20Maximilian&rft.date=2023-04-28&rft.volume=130&rft.issue=17&rft.spage=171403&rft.epage=171403&rft.pages=171403-171403&rft.artnum=171403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.130.171403&rft_dat=%3Cproquest_cross%3E2813556219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813556219&rft_id=info:pmid/37172245&rfr_iscdi=true