Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters

As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high‐resolution hydrographic and bio‐optical data set was collected from two cabled profilers at the Long‐Term Ecosystem Observatory (LEO). Upwelling‐ and downwelling‐favorable winds and a buoyant plume from the Hudson River induced large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. C. Oceans 2004-07, Vol.109 (C7), p.C07S11.1-n/a
Hauptverfasser: Oliver, Matthew J., Schofield, Oscar, Bergmann, Trisha, Glenn, Scott, Orrico, Cristina, Moline, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue C7
container_start_page C07S11.1
container_title Journal of Geophysical Research. C. Oceans
container_volume 109
creator Oliver, Matthew J.
Schofield, Oscar
Bergmann, Trisha
Glenn, Scott
Orrico, Cristina
Moline, Mark
description As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high‐resolution hydrographic and bio‐optical data set was collected from two cabled profilers at the Long‐Term Ecosystem Observatory (LEO). Upwelling‐ and downwelling‐favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine‐wavelength absorption/attenuation meter (ac‐9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac‐9. Derived mean spectral absorption of phytoplankton was used in a bio‐optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio‐optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light‐saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water‐column‐integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio‐optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.
doi_str_mv 10.1029/2002JC001627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28132921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18062518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5662-4162cfc160545835407159d018fa80a860560c6bca25620986ef8fe5d9ff07ed3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEqvSGz8gFxAHAuOJ7dhHFMqWqloQ4kPigOVNbDDNxsF2KPvv8Wor4FR88Yee59WMh5CHFJ5RQPUcAfCiA6AC2ztkhZSLGhHwLlkBZbIGxPY-OU3pO5TFuGBAV-TLSxv9Tz99rfxUJZ-Xav62z2EezXSVw1SZbQpxzr4cXYjV1oc6lGtvxmqOYVj6XOy8r3ZhsGM6hOQlbv1QXZtsY3pA7jkzJnt6s5-QD6_O3nfn9eWb9evuxWVtuBBYs1J073oqgDMuG86gpVwNQKUzEows7wJ6se0NcoGgpLBOOssH5Ry0dmhOyONjbinqx2JT1jufejuWNmxYkkZJG1RI_wtSCQI5lQV8cjsoGqUUa-QBfXpE-xhSitbpOfqdiXtNQR9mo_-dTcEf3SSbVP7RRTP1Pv11BDCKCgqHR-7aj3Z_a6a-WL_rSntYpPoo-ZTtrz-SiVdatE3L9afNWp9v3n7cdOyzxuY3qsOrIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639994388</pqid></control><display><type>article</type><title>Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Oliver, Matthew J. ; Schofield, Oscar ; Bergmann, Trisha ; Glenn, Scott ; Orrico, Cristina ; Moline, Mark</creator><creatorcontrib>Oliver, Matthew J. ; Schofield, Oscar ; Bergmann, Trisha ; Glenn, Scott ; Orrico, Cristina ; Moline, Mark</creatorcontrib><description>As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high‐resolution hydrographic and bio‐optical data set was collected from two cabled profilers at the Long‐Term Ecosystem Observatory (LEO). Upwelling‐ and downwelling‐favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine‐wavelength absorption/attenuation meter (ac‐9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac‐9. Derived mean spectral absorption of phytoplankton was used in a bio‐optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio‐optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light‐saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water‐column‐integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio‐optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1029/2002JC001627</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Algae ; coastal ; Earth, ocean, space ; Exact sciences and technology ; Marine ; optics ; productivity</subject><ispartof>Journal of Geophysical Research. C. Oceans, 2004-07, Vol.109 (C7), p.C07S11.1-n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5662-4162cfc160545835407159d018fa80a860560c6bca25620986ef8fe5d9ff07ed3</citedby><cites>FETCH-LOGICAL-a5662-4162cfc160545835407159d018fa80a860560c6bca25620986ef8fe5d9ff07ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2002JC001627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2002JC001627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16041290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, Matthew J.</creatorcontrib><creatorcontrib>Schofield, Oscar</creatorcontrib><creatorcontrib>Bergmann, Trisha</creatorcontrib><creatorcontrib>Glenn, Scott</creatorcontrib><creatorcontrib>Orrico, Cristina</creatorcontrib><creatorcontrib>Moline, Mark</creatorcontrib><title>Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters</title><title>Journal of Geophysical Research. C. Oceans</title><addtitle>J. Geophys. Res</addtitle><description>As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high‐resolution hydrographic and bio‐optical data set was collected from two cabled profilers at the Long‐Term Ecosystem Observatory (LEO). Upwelling‐ and downwelling‐favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine‐wavelength absorption/attenuation meter (ac‐9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac‐9. Derived mean spectral absorption of phytoplankton was used in a bio‐optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio‐optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light‐saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water‐column‐integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio‐optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.</description><subject>Algae</subject><subject>coastal</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>optics</subject><subject>productivity</subject><issn>0148-0227</issn><issn>2169-9275</issn><issn>2156-2202</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEqvSGz8gFxAHAuOJ7dhHFMqWqloQ4kPigOVNbDDNxsF2KPvv8Wor4FR88Yee59WMh5CHFJ5RQPUcAfCiA6AC2ztkhZSLGhHwLlkBZbIGxPY-OU3pO5TFuGBAV-TLSxv9Tz99rfxUJZ-Xav62z2EezXSVw1SZbQpxzr4cXYjV1oc6lGtvxmqOYVj6XOy8r3ZhsGM6hOQlbv1QXZtsY3pA7jkzJnt6s5-QD6_O3nfn9eWb9evuxWVtuBBYs1J073oqgDMuG86gpVwNQKUzEows7wJ6se0NcoGgpLBOOssH5Ry0dmhOyONjbinqx2JT1jufejuWNmxYkkZJG1RI_wtSCQI5lQV8cjsoGqUUa-QBfXpE-xhSitbpOfqdiXtNQR9mo_-dTcEf3SSbVP7RRTP1Pv11BDCKCgqHR-7aj3Z_a6a-WL_rSntYpPoo-ZTtrz-SiVdatE3L9afNWp9v3n7cdOyzxuY3qsOrIg</recordid><startdate>200407</startdate><enddate>200407</enddate><creator>Oliver, Matthew J.</creator><creator>Schofield, Oscar</creator><creator>Bergmann, Trisha</creator><creator>Glenn, Scott</creator><creator>Orrico, Cristina</creator><creator>Moline, Mark</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>M7N</scope><scope>7TG</scope><scope>H95</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200407</creationdate><title>Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters</title><author>Oliver, Matthew J. ; Schofield, Oscar ; Bergmann, Trisha ; Glenn, Scott ; Orrico, Cristina ; Moline, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5662-4162cfc160545835407159d018fa80a860560c6bca25620986ef8fe5d9ff07ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algae</topic><topic>coastal</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>optics</topic><topic>productivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Matthew J.</creatorcontrib><creatorcontrib>Schofield, Oscar</creatorcontrib><creatorcontrib>Bergmann, Trisha</creatorcontrib><creatorcontrib>Glenn, Scott</creatorcontrib><creatorcontrib>Orrico, Cristina</creatorcontrib><creatorcontrib>Moline, Mark</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. C. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, Matthew J.</au><au>Schofield, Oscar</au><au>Bergmann, Trisha</au><au>Glenn, Scott</au><au>Orrico, Cristina</au><au>Moline, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters</atitle><jtitle>Journal of Geophysical Research. C. Oceans</jtitle><addtitle>J. Geophys. Res</addtitle><date>2004-07</date><risdate>2004</risdate><volume>109</volume><issue>C7</issue><spage>C07S11.1</spage><epage>n/a</epage><pages>C07S11.1-n/a</pages><issn>0148-0227</issn><issn>2169-9275</issn><eissn>2156-2202</eissn><eissn>2169-9291</eissn><abstract>As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high‐resolution hydrographic and bio‐optical data set was collected from two cabled profilers at the Long‐Term Ecosystem Observatory (LEO). Upwelling‐ and downwelling‐favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine‐wavelength absorption/attenuation meter (ac‐9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac‐9. Derived mean spectral absorption of phytoplankton was used in a bio‐optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio‐optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light‐saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water‐column‐integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio‐optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2002JC001627</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. C. Oceans, 2004-07, Vol.109 (C7), p.C07S11.1-n/a
issn 0148-0227
2169-9275
2156-2202
2169-9291
language eng
recordid cdi_proquest_miscellaneous_28132921
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Algae
coastal
Earth, ocean, space
Exact sciences and technology
Marine
optics
productivity
title Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20in%20situ%20phytoplankton%20absorption%20for%20bio-optical%20productivity%20models%20in%20turbid%20waters&rft.jtitle=Journal%20of%20Geophysical%20Research.%20C.%20Oceans&rft.au=Oliver,%20Matthew%20J.&rft.date=2004-07&rft.volume=109&rft.issue=C7&rft.spage=C07S11.1&rft.epage=n/a&rft.pages=C07S11.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2002JC001627&rft_dat=%3Cproquest_cross%3E18062518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639994388&rft_id=info:pmid/&rfr_iscdi=true