Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy
Positron emission tomography (PET) is currently the only feasible method for in-situ and noninvasive three-dimensional monitoring of the precision of the treatment in highly conformal ion therapy. Its positive clinical impact has been proven for fractionated carbon ion therapy of head and neck (H&am...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2005-06, Vol.52 (3), p.778-786 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 786 |
---|---|
container_issue | 3 |
container_start_page | 778 |
container_title | IEEE transactions on nuclear science |
container_volume | 52 |
creator | Parodi, K. Ponisch, F. Enghardt, W. |
description | Positron emission tomography (PET) is currently the only feasible method for in-situ and noninvasive three-dimensional monitoring of the precision of the treatment in highly conformal ion therapy. Its positive clinical impact has been proven for fractionated carbon ion therapy of head and neck (H&N) tumors at the experimental facility at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Following previous promising experiments, the possible extension of the method to the monitoring of proton therapy has been investigated further in extensive in-beam measurements at GSI. Millimeter accuracy for verification of the lateral field position and for the most challenging issue of range monitoring has been demonstrated in monoenergetic and spread-out Bragg-peak (SOBP) proton irradiation of polymethyl methacrylate (PMMA) targets. The irradiation of an inhomogeneous phantom with tissue equivalent inserts in combination with further dynamic analysis has supported the extension of such millimeter precision to real clinical cases, at least in regions of interest for low perfused tissues. All the experimental investigations have been reproduced by the developed modeling rather well. This indicates the possible extraction of valuable clinical information as particle range in-vivo, irradiation field position, and even local deviations from the dose prescription on the basis of the comparison between measured and predicted activity distributions. Hence, the clinical feasibility of in-beam PET for proton therapy monitoring is strongly supported. |
doi_str_mv | 10.1109/TNS.2005.850950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28125432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1487723</ieee_id><sourcerecordid>896226209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-523e466ccbbf1c4df96be59ada8dbca8a0a582a5c86814da0744ee2e6dbda7713</originalsourceid><addsrcrecordid>eNp9kUFLJDEQhYOs4Kx69uAleNg99Zikk-7kuMisCqKC49VQna7ejfR0zyZpcP69GVpY8OCpqOJ7r6h6hJxxtuScmcv1_dNSMKaWWjGj2AFZcKV0wVWtv5EFY1wXRhpzRL7H-JpbqZhakJfV2xaD3-CQoKcxTe2OjgNNf5F2CNE3vvcpjzrqh6JB2NDH1Zp2Y6Dg3BQgId2Mg09j8MOfPbYNY5oNAmx3J-Swgz7i6Uc9Js-_V-urm-Lu4fr26tdd4WRVpkKJEmVVOdc0HXey7UzVoDLQgm4bBxoYKC1AOV1pLltgtZSIAqu2aaGueXlMfs6-ef2_CWOyGx8d9j0MOE7RalMJUQlmMvnjS1JoLpQsRQYvPoGv4xSGfIU1nBtdqrrO0OUMuTDGGLCz2_xMCDvLmd3HYnMsdh-LnWPJivNZ4RHxPy11XYuyfAd6uInZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911983577</pqid></control><display><type>article</type><title>Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy</title><source>IEEE Electronic Library (IEL)</source><creator>Parodi, K. ; Ponisch, F. ; Enghardt, W.</creator><creatorcontrib>Parodi, K. ; Ponisch, F. ; Enghardt, W.</creatorcontrib><description>Positron emission tomography (PET) is currently the only feasible method for in-situ and noninvasive three-dimensional monitoring of the precision of the treatment in highly conformal ion therapy. Its positive clinical impact has been proven for fractionated carbon ion therapy of head and neck (H&N) tumors at the experimental facility at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Following previous promising experiments, the possible extension of the method to the monitoring of proton therapy has been investigated further in extensive in-beam measurements at GSI. Millimeter accuracy for verification of the lateral field position and for the most challenging issue of range monitoring has been demonstrated in monoenergetic and spread-out Bragg-peak (SOBP) proton irradiation of polymethyl methacrylate (PMMA) targets. The irradiation of an inhomogeneous phantom with tissue equivalent inserts in combination with further dynamic analysis has supported the extension of such millimeter precision to real clinical cases, at least in regions of interest for low perfused tissues. All the experimental investigations have been reproduced by the developed modeling rather well. This indicates the possible extraction of valuable clinical information as particle range in-vivo, irradiation field position, and even local deviations from the dose prescription on the basis of the comparison between measured and predicted activity distributions. Hence, the clinical feasibility of in-beam PET for proton therapy monitoring is strongly supported.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2005.850950</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carbon ; Carbon dioxide ; Data mining ; Feasibility ; Fractionation ; Imaging phantoms ; Irradiation ; Mathematical models ; Medical treatment ; Monitoring ; Neck ; Neoplasms ; PET ; Polymethyl methacrylate ; Polymethyl methacrylates ; Positron emission ; Positron emission tomography ; proton therapy ; Protons ; Studies ; Therapy ; therapy monitoring</subject><ispartof>IEEE transactions on nuclear science, 2005-06, Vol.52 (3), p.778-786</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-523e466ccbbf1c4df96be59ada8dbca8a0a582a5c86814da0744ee2e6dbda7713</citedby><cites>FETCH-LOGICAL-c463t-523e466ccbbf1c4df96be59ada8dbca8a0a582a5c86814da0744ee2e6dbda7713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1487723$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1487723$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Parodi, K.</creatorcontrib><creatorcontrib>Ponisch, F.</creatorcontrib><creatorcontrib>Enghardt, W.</creatorcontrib><title>Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Positron emission tomography (PET) is currently the only feasible method for in-situ and noninvasive three-dimensional monitoring of the precision of the treatment in highly conformal ion therapy. Its positive clinical impact has been proven for fractionated carbon ion therapy of head and neck (H&N) tumors at the experimental facility at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Following previous promising experiments, the possible extension of the method to the monitoring of proton therapy has been investigated further in extensive in-beam measurements at GSI. Millimeter accuracy for verification of the lateral field position and for the most challenging issue of range monitoring has been demonstrated in monoenergetic and spread-out Bragg-peak (SOBP) proton irradiation of polymethyl methacrylate (PMMA) targets. The irradiation of an inhomogeneous phantom with tissue equivalent inserts in combination with further dynamic analysis has supported the extension of such millimeter precision to real clinical cases, at least in regions of interest for low perfused tissues. All the experimental investigations have been reproduced by the developed modeling rather well. This indicates the possible extraction of valuable clinical information as particle range in-vivo, irradiation field position, and even local deviations from the dose prescription on the basis of the comparison between measured and predicted activity distributions. Hence, the clinical feasibility of in-beam PET for proton therapy monitoring is strongly supported.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Data mining</subject><subject>Feasibility</subject><subject>Fractionation</subject><subject>Imaging phantoms</subject><subject>Irradiation</subject><subject>Mathematical models</subject><subject>Medical treatment</subject><subject>Monitoring</subject><subject>Neck</subject><subject>Neoplasms</subject><subject>PET</subject><subject>Polymethyl methacrylate</subject><subject>Polymethyl methacrylates</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>proton therapy</subject><subject>Protons</subject><subject>Studies</subject><subject>Therapy</subject><subject>therapy monitoring</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFLJDEQhYOs4Kx69uAleNg99Zikk-7kuMisCqKC49VQna7ejfR0zyZpcP69GVpY8OCpqOJ7r6h6hJxxtuScmcv1_dNSMKaWWjGj2AFZcKV0wVWtv5EFY1wXRhpzRL7H-JpbqZhakJfV2xaD3-CQoKcxTe2OjgNNf5F2CNE3vvcpjzrqh6JB2NDH1Zp2Y6Dg3BQgId2Mg09j8MOfPbYNY5oNAmx3J-Swgz7i6Uc9Js-_V-urm-Lu4fr26tdd4WRVpkKJEmVVOdc0HXey7UzVoDLQgm4bBxoYKC1AOV1pLltgtZSIAqu2aaGueXlMfs6-ef2_CWOyGx8d9j0MOE7RalMJUQlmMvnjS1JoLpQsRQYvPoGv4xSGfIU1nBtdqrrO0OUMuTDGGLCz2_xMCDvLmd3HYnMsdh-LnWPJivNZ4RHxPy11XYuyfAd6uInZ</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Parodi, K.</creator><creator>Ponisch, F.</creator><creator>Enghardt, W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20050601</creationdate><title>Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy</title><author>Parodi, K. ; Ponisch, F. ; Enghardt, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-523e466ccbbf1c4df96be59ada8dbca8a0a582a5c86814da0744ee2e6dbda7713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Data mining</topic><topic>Feasibility</topic><topic>Fractionation</topic><topic>Imaging phantoms</topic><topic>Irradiation</topic><topic>Mathematical models</topic><topic>Medical treatment</topic><topic>Monitoring</topic><topic>Neck</topic><topic>Neoplasms</topic><topic>PET</topic><topic>Polymethyl methacrylate</topic><topic>Polymethyl methacrylates</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>proton therapy</topic><topic>Protons</topic><topic>Studies</topic><topic>Therapy</topic><topic>therapy monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parodi, K.</creatorcontrib><creatorcontrib>Ponisch, F.</creatorcontrib><creatorcontrib>Enghardt, W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parodi, K.</au><au>Ponisch, F.</au><au>Enghardt, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2005-06-01</date><risdate>2005</risdate><volume>52</volume><issue>3</issue><spage>778</spage><epage>786</epage><pages>778-786</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Positron emission tomography (PET) is currently the only feasible method for in-situ and noninvasive three-dimensional monitoring of the precision of the treatment in highly conformal ion therapy. Its positive clinical impact has been proven for fractionated carbon ion therapy of head and neck (H&N) tumors at the experimental facility at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. Following previous promising experiments, the possible extension of the method to the monitoring of proton therapy has been investigated further in extensive in-beam measurements at GSI. Millimeter accuracy for verification of the lateral field position and for the most challenging issue of range monitoring has been demonstrated in monoenergetic and spread-out Bragg-peak (SOBP) proton irradiation of polymethyl methacrylate (PMMA) targets. The irradiation of an inhomogeneous phantom with tissue equivalent inserts in combination with further dynamic analysis has supported the extension of such millimeter precision to real clinical cases, at least in regions of interest for low perfused tissues. All the experimental investigations have been reproduced by the developed modeling rather well. This indicates the possible extraction of valuable clinical information as particle range in-vivo, irradiation field position, and even local deviations from the dose prescription on the basis of the comparison between measured and predicted activity distributions. Hence, the clinical feasibility of in-beam PET for proton therapy monitoring is strongly supported.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2005.850950</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2005-06, Vol.52 (3), p.778-786 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_miscellaneous_28125432 |
source | IEEE Electronic Library (IEL) |
subjects | Carbon Carbon dioxide Data mining Feasibility Fractionation Imaging phantoms Irradiation Mathematical models Medical treatment Monitoring Neck Neoplasms PET Polymethyl methacrylate Polymethyl methacrylates Positron emission Positron emission tomography proton therapy Protons Studies Therapy therapy monitoring |
title | Experimental study on the feasibility of in-beam PET for accurate monitoring of proton therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20the%20feasibility%20of%20in-beam%20PET%20for%20accurate%20monitoring%20of%20proton%20therapy&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Parodi,%20K.&rft.date=2005-06-01&rft.volume=52&rft.issue=3&rft.spage=778&rft.epage=786&rft.pages=778-786&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2005.850950&rft_dat=%3Cproquest_RIE%3E896226209%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911983577&rft_id=info:pmid/&rft_ieee_id=1487723&rfr_iscdi=true |