Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions

Sequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-08, Vol.35 (32), p.e2302861-n/a
Hauptverfasser: Fan, Baobing, Zhong, Wenkai, Gao, Wei, Fu, Huiting, Lin, Francis R., Wong, Reese W.‐Y., Liu, Ming, Zhu, Chenhui, Wang, Cheng, Yip, Hin‐Lap, Liu, Feng, Jen, Alex K.‐Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2302861
container_title Advanced materials (Weinheim)
container_volume 35
creator Fan, Baobing
Zhong, Wenkai
Gao, Wei
Fu, Huiting
Lin, Francis R.
Wong, Reese W.‐Y.
Liu, Ming
Zhu, Chenhui
Wang, Cheng
Yip, Hin‐Lap
Liu, Feng
Jen, Alex K.‐Y.
description Sequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs is still quite challenging in preventing the penetration of small‐molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD‐OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π–π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p‐dibromobenzene shows a stronger interaction with the donor while 2‐chloronaphthalene (2‐CN) interacts more preferably with acceptor. Combining the depth‐dependent morphological study aided by multiple X‐ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger‐interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2‐CN‐treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure. Solid additives with varied electrostatic potential and steric hinderance are introduced to investigate the impact of both evaporation dynamics and selective interaction on vertical component distribution. The removal of solid additives can drive the more strongly interacting component upward to the surface, delivering a high performance of 19.2%, among the highest efficiencies achieved in organic solar cells.
doi_str_mv 10.1002/adma.202302861
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2812508609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848120037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-cb2de77edf3f7b50ff8bfbbc5bd06f314ead7ad3646dc8e075b697bb9e4d13a93</originalsourceid><addsrcrecordid>eNqF0U1r3DAQBmARWpLtNtcei6CXXLwZWbZs97Zs-hFICCRNrkayRq2CLW0lOSX99dWyaQK99KSRePQy8BLyjsGKAZSnUk9yVULJoWwFOyALVpesqKCrX5EFdLwuOlG1R-RNjPcA0AkQh-SIN0xUvGIL8vvWaQwxSaet-07TD6TXfkTqDb3GyT9IlS83frSarrW2yT5g_EhvcMRhN9NzlzDIPHtHN96lYNWcMNLk6R2GZAc55vdp6x26RM9s3IvM41vy2sgx4vHTuSS3nz9923wtLq6-nG_WF8XAG86KQZUamwa14aZRNRjTKqPUUCsNwnBWodSN1FxUQg8tQlMr0TVKdVhpxmXHl-Rkn7sN_ueMMfWTjQOOo3To59iXLStraAXs6Id_6L2fg8vbZVVlB5B3WpLVXg3BxxjQ9NtgJxkeewb9rpV-10r_3Er-8P4pdlYT6mf-t4YMuj34ZUd8_E9cvz67XL-E_wFoPpvK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848120037</pqid></control><display><type>article</type><title>Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fan, Baobing ; Zhong, Wenkai ; Gao, Wei ; Fu, Huiting ; Lin, Francis R. ; Wong, Reese W.‐Y. ; Liu, Ming ; Zhu, Chenhui ; Wang, Cheng ; Yip, Hin‐Lap ; Liu, Feng ; Jen, Alex K.‐Y.</creator><creatorcontrib>Fan, Baobing ; Zhong, Wenkai ; Gao, Wei ; Fu, Huiting ; Lin, Francis R. ; Wong, Reese W.‐Y. ; Liu, Ming ; Zhu, Chenhui ; Wang, Cheng ; Yip, Hin‐Lap ; Liu, Feng ; Jen, Alex K.‐Y.</creatorcontrib><description>Sequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs is still quite challenging in preventing the penetration of small‐molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD‐OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π–π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p‐dibromobenzene shows a stronger interaction with the donor while 2‐chloronaphthalene (2‐CN) interacts more preferably with acceptor. Combining the depth‐dependent morphological study aided by multiple X‐ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger‐interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2‐CN‐treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure. Solid additives with varied electrostatic potential and steric hinderance are introduced to investigate the impact of both evaporation dynamics and selective interaction on vertical component distribution. The removal of solid additives can drive the more strongly interacting component upward to the surface, delivering a high performance of 19.2%, among the highest efficiencies achieved in organic solar cells.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302861</identifier><identifier>PMID: 37164341</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; Energy conversion efficiency ; Evaporation ; evaporation dynamics ; Materials science ; Morphology ; organic solar cells ; Photovoltaic cells ; selective interactions ; Solar cells ; solid additives ; vertical component distribution ; Vertical distribution</subject><ispartof>Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302861-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-cb2de77edf3f7b50ff8bfbbc5bd06f314ead7ad3646dc8e075b697bb9e4d13a93</citedby><cites>FETCH-LOGICAL-c3731-cb2de77edf3f7b50ff8bfbbc5bd06f314ead7ad3646dc8e075b697bb9e4d13a93</cites><orcidid>0000-0002-9219-7749 ; 0000-0001-6514-7490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202302861$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202302861$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37164341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Zhong, Wenkai</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Fu, Huiting</creatorcontrib><creatorcontrib>Lin, Francis R.</creatorcontrib><creatorcontrib>Wong, Reese W.‐Y.</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><title>Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Sequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs is still quite challenging in preventing the penetration of small‐molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD‐OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π–π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p‐dibromobenzene shows a stronger interaction with the donor while 2‐chloronaphthalene (2‐CN) interacts more preferably with acceptor. Combining the depth‐dependent morphological study aided by multiple X‐ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger‐interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2‐CN‐treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure. Solid additives with varied electrostatic potential and steric hinderance are introduced to investigate the impact of both evaporation dynamics and selective interaction on vertical component distribution. The removal of solid additives can drive the more strongly interacting component upward to the surface, delivering a high performance of 19.2%, among the highest efficiencies achieved in organic solar cells.</description><subject>Additives</subject><subject>Energy conversion efficiency</subject><subject>Evaporation</subject><subject>evaporation dynamics</subject><subject>Materials science</subject><subject>Morphology</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>selective interactions</subject><subject>Solar cells</subject><subject>solid additives</subject><subject>vertical component distribution</subject><subject>Vertical distribution</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0U1r3DAQBmARWpLtNtcei6CXXLwZWbZs97Zs-hFICCRNrkayRq2CLW0lOSX99dWyaQK99KSRePQy8BLyjsGKAZSnUk9yVULJoWwFOyALVpesqKCrX5EFdLwuOlG1R-RNjPcA0AkQh-SIN0xUvGIL8vvWaQwxSaet-07TD6TXfkTqDb3GyT9IlS83frSarrW2yT5g_EhvcMRhN9NzlzDIPHtHN96lYNWcMNLk6R2GZAc55vdp6x26RM9s3IvM41vy2sgx4vHTuSS3nz9923wtLq6-nG_WF8XAG86KQZUamwa14aZRNRjTKqPUUCsNwnBWodSN1FxUQg8tQlMr0TVKdVhpxmXHl-Rkn7sN_ueMMfWTjQOOo3To59iXLStraAXs6Id_6L2fg8vbZVVlB5B3WpLVXg3BxxjQ9NtgJxkeewb9rpV-10r_3Er-8P4pdlYT6mf-t4YMuj34ZUd8_E9cvz67XL-E_wFoPpvK</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Fan, Baobing</creator><creator>Zhong, Wenkai</creator><creator>Gao, Wei</creator><creator>Fu, Huiting</creator><creator>Lin, Francis R.</creator><creator>Wong, Reese W.‐Y.</creator><creator>Liu, Ming</creator><creator>Zhu, Chenhui</creator><creator>Wang, Cheng</creator><creator>Yip, Hin‐Lap</creator><creator>Liu, Feng</creator><creator>Jen, Alex K.‐Y.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0001-6514-7490</orcidid></search><sort><creationdate>20230801</creationdate><title>Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions</title><author>Fan, Baobing ; Zhong, Wenkai ; Gao, Wei ; Fu, Huiting ; Lin, Francis R. ; Wong, Reese W.‐Y. ; Liu, Ming ; Zhu, Chenhui ; Wang, Cheng ; Yip, Hin‐Lap ; Liu, Feng ; Jen, Alex K.‐Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-cb2de77edf3f7b50ff8bfbbc5bd06f314ead7ad3646dc8e075b697bb9e4d13a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>Energy conversion efficiency</topic><topic>Evaporation</topic><topic>evaporation dynamics</topic><topic>Materials science</topic><topic>Morphology</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>selective interactions</topic><topic>Solar cells</topic><topic>solid additives</topic><topic>vertical component distribution</topic><topic>Vertical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Baobing</creatorcontrib><creatorcontrib>Zhong, Wenkai</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Fu, Huiting</creatorcontrib><creatorcontrib>Lin, Francis R.</creatorcontrib><creatorcontrib>Wong, Reese W.‐Y.</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Zhu, Chenhui</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Yip, Hin‐Lap</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Jen, Alex K.‐Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Baobing</au><au>Zhong, Wenkai</au><au>Gao, Wei</au><au>Fu, Huiting</au><au>Lin, Francis R.</au><au>Wong, Reese W.‐Y.</au><au>Liu, Ming</au><au>Zhu, Chenhui</au><au>Wang, Cheng</au><au>Yip, Hin‐Lap</au><au>Liu, Feng</au><au>Jen, Alex K.‐Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>32</issue><spage>e2302861</spage><epage>n/a</epage><pages>e2302861-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Sequentially deposited organic solar cells (SD‐OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase‐separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD‐OSCs is still quite challenging in preventing the penetration of small‐molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD‐OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π–π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p‐dibromobenzene shows a stronger interaction with the donor while 2‐chloronaphthalene (2‐CN) interacts more preferably with acceptor. Combining the depth‐dependent morphological study aided by multiple X‐ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger‐interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2‐CN‐treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure. Solid additives with varied electrostatic potential and steric hinderance are introduced to investigate the impact of both evaporation dynamics and selective interaction on vertical component distribution. The removal of solid additives can drive the more strongly interacting component upward to the surface, delivering a high performance of 19.2%, among the highest efficiencies achieved in organic solar cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37164341</pmid><doi>10.1002/adma.202302861</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9219-7749</orcidid><orcidid>https://orcid.org/0000-0001-6514-7490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-08, Vol.35 (32), p.e2302861-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2812508609
source Wiley Online Library Journals Frontfile Complete
subjects Additives
Energy conversion efficiency
Evaporation
evaporation dynamics
Materials science
Morphology
organic solar cells
Photovoltaic cells
selective interactions
Solar cells
solid additives
vertical component distribution
Vertical distribution
title Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Role%20of%20Removable%20Solid%20Additives:%20Selective%20Interaction%20Contributes%20to%20Vertical%20Component%20Distributions&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Fan,%20Baobing&rft.date=2023-08-01&rft.volume=35&rft.issue=32&rft.spage=e2302861&rft.epage=n/a&rft.pages=e2302861-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302861&rft_dat=%3Cproquest_cross%3E2848120037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848120037&rft_id=info:pmid/37164341&rfr_iscdi=true