Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion

This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748
Hauptverfasser: He, Hong-Ju, Wang, Yuling, Wang, Yangyang, Al-Maqtari, Qais Ali, Liu, Hongjie, Zhang, Mian, Ou, Xingqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124748
container_issue Pt 1
container_start_page 124748
container_title International journal of biological macromolecules
container_volume 242
creator He, Hong-Ju
Wang, Yuling
Wang, Yangyang
Al-Maqtari, Qais Ali
Liu, Hongjie
Zhang, Mian
Ou, Xingqi
description This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.
doi_str_mv 10.1016/j.ijbiomac.2023.124748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2812506789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813023016422</els_id><sourcerecordid>2812506789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhFSovyyLBjhMn3oEqLiONQEJlhZDl2MfFo8RObafV8Ba8MR6mZcvq6D_6zvVH6IKSmhLK3-xrtx9dmJWuG9KwmjZt3w5P0IYOvagIIewp2hDa0mqgjJyhFyntS5Z3dHiOzlhPeUvbZoN-X4d7FU3CUS3OTAd8uyqfnT04f4OVN_jOpVVN7tdRp6yi_ol18Bl8xsHidA-Q8RKyygF_3y5hDqDwqIpWCV_u6td4p-YfJZPA4ODx5-1XnBbQOarpb383qxvApvDYrskF_xI9s2pK8OohnqNvH95fX32qdl8-bq_e7SrN-JArpoSgBgTThHWa205YRQy1wMuVbNStELzhSoxUtJR0fUdpOzbcEm51P0DPztHlqe8Sw-0KKcvZJQ3TpDyENclmoE1HeD-IgvITqmNIKYKVSyx7x4OkRB7tkHv5aIc82iFPdpTCi4cZ6ziD-Vf2-P8CvD0BUC69cxBl0g68BuNieZI0wf1vxh-2SJ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812506789</pqid></control><display><type>article</type><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><source>Elsevier ScienceDirect Journals</source><creator>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</creator><creatorcontrib>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</creatorcontrib><description>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.124748</identifier><identifier>PMID: 37164142</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Modeling ; Prediction ; Starch ; Sweet potato ; Visualization</subject><ispartof>International journal of biological macromolecules, 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</citedby><cites>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</cites><orcidid>0000-0002-6752-9326 ; 0000-0001-7112-5909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2023.124748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37164142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Hong-Ju</creatorcontrib><creatorcontrib>Wang, Yuling</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><creatorcontrib>Al-Maqtari, Qais Ali</creatorcontrib><creatorcontrib>Liu, Hongjie</creatorcontrib><creatorcontrib>Zhang, Mian</creatorcontrib><creatorcontrib>Ou, Xingqi</creatorcontrib><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</description><subject>Modeling</subject><subject>Prediction</subject><subject>Starch</subject><subject>Sweet potato</subject><subject>Visualization</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0EokPhFSovyyLBjhMn3oEqLiONQEJlhZDl2MfFo8RObafV8Ba8MR6mZcvq6D_6zvVH6IKSmhLK3-xrtx9dmJWuG9KwmjZt3w5P0IYOvagIIewp2hDa0mqgjJyhFyntS5Z3dHiOzlhPeUvbZoN-X4d7FU3CUS3OTAd8uyqfnT04f4OVN_jOpVVN7tdRp6yi_ol18Bl8xsHidA-Q8RKyygF_3y5hDqDwqIpWCV_u6td4p-YfJZPA4ODx5-1XnBbQOarpb383qxvApvDYrskF_xI9s2pK8OohnqNvH95fX32qdl8-bq_e7SrN-JArpoSgBgTThHWa205YRQy1wMuVbNStELzhSoxUtJR0fUdpOzbcEm51P0DPztHlqe8Sw-0KKcvZJQ3TpDyENclmoE1HeD-IgvITqmNIKYKVSyx7x4OkRB7tkHv5aIc82iFPdpTCi4cZ6ziD-Vf2-P8CvD0BUC69cxBl0g68BuNieZI0wf1vxh-2SJ-0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>He, Hong-Ju</creator><creator>Wang, Yuling</creator><creator>Wang, Yangyang</creator><creator>Al-Maqtari, Qais Ali</creator><creator>Liu, Hongjie</creator><creator>Zhang, Mian</creator><creator>Ou, Xingqi</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6752-9326</orcidid><orcidid>https://orcid.org/0000-0001-7112-5909</orcidid></search><sort><creationdate>20230701</creationdate><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><author>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Modeling</topic><topic>Prediction</topic><topic>Starch</topic><topic>Sweet potato</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hong-Ju</creatorcontrib><creatorcontrib>Wang, Yuling</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><creatorcontrib>Al-Maqtari, Qais Ali</creatorcontrib><creatorcontrib>Liu, Hongjie</creatorcontrib><creatorcontrib>Zhang, Mian</creatorcontrib><creatorcontrib>Ou, Xingqi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Hong-Ju</au><au>Wang, Yuling</au><au>Wang, Yangyang</au><au>Al-Maqtari, Qais Ali</au><au>Liu, Hongjie</au><au>Zhang, Mian</au><au>Ou, Xingqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>242</volume><issue>Pt 1</issue><spage>124748</spage><epage>124748</epage><pages>124748-124748</pages><artnum>124748</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37164142</pmid><doi>10.1016/j.ijbiomac.2023.124748</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6752-9326</orcidid><orcidid>https://orcid.org/0000-0001-7112-5909</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_2812506789
source Elsevier ScienceDirect Journals
subjects Modeling
Prediction
Starch
Sweet potato
Visualization
title Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20rapidly%20quantifying%20and%20visualizing%20starch%20content%20of%20sweet%20potato%20%5BIpomoea%20batatas%20(L.)%20Lam%5D%20based%20on%20NIR%20spectral%20and%20image%20data%20fusion&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=He,%20Hong-Ju&rft.date=2023-07-01&rft.volume=242&rft.issue=Pt%201&rft.spage=124748&rft.epage=124748&rft.pages=124748-124748&rft.artnum=124748&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.124748&rft_dat=%3Cproquest_cross%3E2812506789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812506789&rft_id=info:pmid/37164142&rft_els_id=S0141813023016422&rfr_iscdi=true