Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion
This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124748 |
---|---|
container_issue | Pt 1 |
container_start_page | 124748 |
container_title | International journal of biological macromolecules |
container_volume | 242 |
creator | He, Hong-Ju Wang, Yuling Wang, Yangyang Al-Maqtari, Qais Ali Liu, Hongjie Zhang, Mian Ou, Xingqi |
description | This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future. |
doi_str_mv | 10.1016/j.ijbiomac.2023.124748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2812506789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813023016422</els_id><sourcerecordid>2812506789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPhFSovyyLBjhMn3oEqLiONQEJlhZDl2MfFo8RObafV8Ba8MR6mZcvq6D_6zvVH6IKSmhLK3-xrtx9dmJWuG9KwmjZt3w5P0IYOvagIIewp2hDa0mqgjJyhFyntS5Z3dHiOzlhPeUvbZoN-X4d7FU3CUS3OTAd8uyqfnT04f4OVN_jOpVVN7tdRp6yi_ol18Bl8xsHidA-Q8RKyygF_3y5hDqDwqIpWCV_u6td4p-YfJZPA4ODx5-1XnBbQOarpb383qxvApvDYrskF_xI9s2pK8OohnqNvH95fX32qdl8-bq_e7SrN-JArpoSgBgTThHWa205YRQy1wMuVbNStELzhSoxUtJR0fUdpOzbcEm51P0DPztHlqe8Sw-0KKcvZJQ3TpDyENclmoE1HeD-IgvITqmNIKYKVSyx7x4OkRB7tkHv5aIc82iFPdpTCi4cZ6ziD-Vf2-P8CvD0BUC69cxBl0g68BuNieZI0wf1vxh-2SJ-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2812506789</pqid></control><display><type>article</type><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><source>Elsevier ScienceDirect Journals</source><creator>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</creator><creatorcontrib>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</creatorcontrib><description>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2023.124748</identifier><identifier>PMID: 37164142</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Modeling ; Prediction ; Starch ; Sweet potato ; Visualization</subject><ispartof>International journal of biological macromolecules, 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</citedby><cites>FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</cites><orcidid>0000-0002-6752-9326 ; 0000-0001-7112-5909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2023.124748$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37164142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Hong-Ju</creatorcontrib><creatorcontrib>Wang, Yuling</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><creatorcontrib>Al-Maqtari, Qais Ali</creatorcontrib><creatorcontrib>Liu, Hongjie</creatorcontrib><creatorcontrib>Zhang, Mian</creatorcontrib><creatorcontrib>Ou, Xingqi</creatorcontrib><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</description><subject>Modeling</subject><subject>Prediction</subject><subject>Starch</subject><subject>Sweet potato</subject><subject>Visualization</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctu1DAUhi0EokPhFSovyyLBjhMn3oEqLiONQEJlhZDl2MfFo8RObafV8Ba8MR6mZcvq6D_6zvVH6IKSmhLK3-xrtx9dmJWuG9KwmjZt3w5P0IYOvagIIewp2hDa0mqgjJyhFyntS5Z3dHiOzlhPeUvbZoN-X4d7FU3CUS3OTAd8uyqfnT04f4OVN_jOpVVN7tdRp6yi_ol18Bl8xsHidA-Q8RKyygF_3y5hDqDwqIpWCV_u6td4p-YfJZPA4ODx5-1XnBbQOarpb383qxvApvDYrskF_xI9s2pK8OohnqNvH95fX32qdl8-bq_e7SrN-JArpoSgBgTThHWa205YRQy1wMuVbNStELzhSoxUtJR0fUdpOzbcEm51P0DPztHlqe8Sw-0KKcvZJQ3TpDyENclmoE1HeD-IgvITqmNIKYKVSyx7x4OkRB7tkHv5aIc82iFPdpTCi4cZ6ziD-Vf2-P8CvD0BUC69cxBl0g68BuNieZI0wf1vxh-2SJ-0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>He, Hong-Ju</creator><creator>Wang, Yuling</creator><creator>Wang, Yangyang</creator><creator>Al-Maqtari, Qais Ali</creator><creator>Liu, Hongjie</creator><creator>Zhang, Mian</creator><creator>Ou, Xingqi</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6752-9326</orcidid><orcidid>https://orcid.org/0000-0001-7112-5909</orcidid></search><sort><creationdate>20230701</creationdate><title>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</title><author>He, Hong-Ju ; Wang, Yuling ; Wang, Yangyang ; Al-Maqtari, Qais Ali ; Liu, Hongjie ; Zhang, Mian ; Ou, Xingqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3a991de93c035c6f59fa0d1fe60063bc499626a9b19410575114b26f06fc78e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Modeling</topic><topic>Prediction</topic><topic>Starch</topic><topic>Sweet potato</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hong-Ju</creatorcontrib><creatorcontrib>Wang, Yuling</creatorcontrib><creatorcontrib>Wang, Yangyang</creatorcontrib><creatorcontrib>Al-Maqtari, Qais Ali</creatorcontrib><creatorcontrib>Liu, Hongjie</creatorcontrib><creatorcontrib>Zhang, Mian</creatorcontrib><creatorcontrib>Ou, Xingqi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Hong-Ju</au><au>Wang, Yuling</au><au>Wang, Yangyang</au><au>Al-Maqtari, Qais Ali</au><au>Liu, Hongjie</au><au>Zhang, Mian</au><au>Ou, Xingqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>242</volume><issue>Pt 1</issue><spage>124748</spage><epage>124748</epage><pages>124748-124748</pages><artnum>124748</artnum><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>This study aimed to achieve the rapid quantification and visualization of the starch content in sweet potato via near-infrared (NIR) spectral and image data fusion. The hyperspectral images of the sweet potato samples containing 900–1700 nm spectral information within every pixel were collected. The spectra were preprocessed, analyzed and the 18 informative wavelengths were finally extracted to relate to the measured starch content using the multiple linear regression (MLR) algorithm, producing a good quantitative prediction accuracy with a correlation coefficient of prediction (rP) of 0.970 and a root-mean-square error of prediction (RMSEP) of 0.874 g/100 g by an external validation using a set of dependent samples. The MLR model was further verified in terms of soundness and predictive validity via F-test and t-test, and then transferred to each pixel of the original two dimensional images with the help of a developed algorithm, generating color distribution maps to achieve the vivid visualization of the starch distribution. The study demonstrated that the fusion of the NIR spectral and image data provided a good strategy for the rapidly and nondestructively monitoring the starch content of sweet potato. This technique can be applied to industrial use in the future.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37164142</pmid><doi>10.1016/j.ijbiomac.2023.124748</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6752-9326</orcidid><orcidid>https://orcid.org/0000-0001-7112-5909</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2023-07, Vol.242 (Pt 1), p.124748-124748, Article 124748 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2812506789 |
source | Elsevier ScienceDirect Journals |
subjects | Modeling Prediction Starch Sweet potato Visualization |
title | Towards rapidly quantifying and visualizing starch content of sweet potato [Ipomoea batatas (L.) Lam] based on NIR spectral and image data fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20rapidly%20quantifying%20and%20visualizing%20starch%20content%20of%20sweet%20potato%20%5BIpomoea%20batatas%20(L.)%20Lam%5D%20based%20on%20NIR%20spectral%20and%20image%20data%20fusion&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=He,%20Hong-Ju&rft.date=2023-07-01&rft.volume=242&rft.issue=Pt%201&rft.spage=124748&rft.epage=124748&rft.pages=124748-124748&rft.artnum=124748&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2023.124748&rft_dat=%3Cproquest_cross%3E2812506789%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2812506789&rft_id=info:pmid/37164142&rft_els_id=S0141813023016422&rfr_iscdi=true |