Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (20), p.24034-24046
Hauptverfasser: Hao, Lili, Tao, Xiwang, Feng, Miao, Zhou, Ke, He, Yiyan, Yang, Jun, Mao, Hongli, Gu, Zhongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24046
container_issue 20
container_start_page 24034
container_title ACS applied materials & interfaces
container_volume 15
creator Hao, Lili
Tao, Xiwang
Feng, Miao
Zhou, Ke
He, Yiyan
Yang, Jun
Mao, Hongli
Gu, Zhongwei
description The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene “click” reaction). The unique stepwise cross-linking mechanism promises the thermosensitive bioink appropriate viscosity at different printing stages, making it possible to print complex structures with excellent shape fidelity and simultaneously maintain the biological activity of cells. In vitro studies reveal that 3D-printed hydrogels are beneficial for enhancing cell viability. Further, in vivo experiments demonstrate that cell-laden printed hydrogels significantly promote wound healing and re-epithelialization by modulating inflammation and accelerating collagen deposition and angiogenesis. Therefore, the proposed stepwise multi-cross-linking strategy is expected to accelerate the development of novel bioinks and promote the clinical applications of 3D bioprinting.
doi_str_mv 10.1021/acsami.3c00688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811941214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811941214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f014084e77055b19446443ed50e56c7901ff205903a5f4fe9f91e4aa2b53dfed3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMobk6vHiVHETqTJlnbo87NCRMFJx5L2rzMbG0zmxbxvzelczdP7_H4fR_v-xC6pGRMSUhvZe5kacYsJ2QSx0doSBPOgzgU4fFh53yAzpzbeISFRJyiAYuoSBKaDNH6rYHdt3GAn9uiMcG0ts4FS1NtTbXG98b6DWtbY_aAZ2UGSoHqzrvaVE2HNBa_1ra0DeB5WxTB6tPk2wqcwx-2rRRegCw8d45OtCwcXOznCL3PZ6vpIli-PD5N75aBZIw0gSaUk5hDFBEhsu7_CecMlCAgJnmUEKq1j5AQJoXmGhKdUOBShplgSoNiI3Td--5q-9WCa9LSuByKQlZgW5eGMfWuNKTco-MezbvMNejUhypl_ZNSknblpn256b5cL7jae7dZCeqA_7XpgZse8MJ0Y9u68lH_c_sFuJ-ECw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811941214</pqid></control><display><type>article</type><title>Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Hao, Lili ; Tao, Xiwang ; Feng, Miao ; Zhou, Ke ; He, Yiyan ; Yang, Jun ; Mao, Hongli ; Gu, Zhongwei</creator><creatorcontrib>Hao, Lili ; Tao, Xiwang ; Feng, Miao ; Zhou, Ke ; He, Yiyan ; Yang, Jun ; Mao, Hongli ; Gu, Zhongwei</creatorcontrib><description>The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene “click” reaction). The unique stepwise cross-linking mechanism promises the thermosensitive bioink appropriate viscosity at different printing stages, making it possible to print complex structures with excellent shape fidelity and simultaneously maintain the biological activity of cells. In vitro studies reveal that 3D-printed hydrogels are beneficial for enhancing cell viability. Further, in vivo experiments demonstrate that cell-laden printed hydrogels significantly promote wound healing and re-epithelialization by modulating inflammation and accelerating collagen deposition and angiogenesis. Therefore, the proposed stepwise multi-cross-linking strategy is expected to accelerate the development of novel bioinks and promote the clinical applications of 3D bioprinting.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c00688</identifier><identifier>PMID: 37159919</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces ; Bioprinting - methods ; Hydrogels - chemistry ; Printing, Three-Dimensional ; Tissue Engineering ; Tissue Scaffolds - chemistry ; Wound Healing</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (20), p.24034-24046</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f014084e77055b19446443ed50e56c7901ff205903a5f4fe9f91e4aa2b53dfed3</citedby><cites>FETCH-LOGICAL-a330t-f014084e77055b19446443ed50e56c7901ff205903a5f4fe9f91e4aa2b53dfed3</cites><orcidid>0000-0002-1568-6047 ; 0000-0003-0525-1290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c00688$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c00688$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37159919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Tao, Xiwang</creatorcontrib><creatorcontrib>Feng, Miao</creatorcontrib><creatorcontrib>Zhou, Ke</creatorcontrib><creatorcontrib>He, Yiyan</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Mao, Hongli</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><title>Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene “click” reaction). The unique stepwise cross-linking mechanism promises the thermosensitive bioink appropriate viscosity at different printing stages, making it possible to print complex structures with excellent shape fidelity and simultaneously maintain the biological activity of cells. In vitro studies reveal that 3D-printed hydrogels are beneficial for enhancing cell viability. Further, in vivo experiments demonstrate that cell-laden printed hydrogels significantly promote wound healing and re-epithelialization by modulating inflammation and accelerating collagen deposition and angiogenesis. Therefore, the proposed stepwise multi-cross-linking strategy is expected to accelerate the development of novel bioinks and promote the clinical applications of 3D bioprinting.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Bioprinting - methods</subject><subject>Hydrogels - chemistry</subject><subject>Printing, Three-Dimensional</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Wound Healing</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUxoMobk6vHiVHETqTJlnbo87NCRMFJx5L2rzMbG0zmxbxvzelczdP7_H4fR_v-xC6pGRMSUhvZe5kacYsJ2QSx0doSBPOgzgU4fFh53yAzpzbeISFRJyiAYuoSBKaDNH6rYHdt3GAn9uiMcG0ts4FS1NtTbXG98b6DWtbY_aAZ2UGSoHqzrvaVE2HNBa_1ra0DeB5WxTB6tPk2wqcwx-2rRRegCw8d45OtCwcXOznCL3PZ6vpIli-PD5N75aBZIw0gSaUk5hDFBEhsu7_CecMlCAgJnmUEKq1j5AQJoXmGhKdUOBShplgSoNiI3Td--5q-9WCa9LSuByKQlZgW5eGMfWuNKTco-MezbvMNejUhypl_ZNSknblpn256b5cL7jae7dZCeqA_7XpgZse8MJ0Y9u68lH_c_sFuJ-ECw</recordid><startdate>20230524</startdate><enddate>20230524</enddate><creator>Hao, Lili</creator><creator>Tao, Xiwang</creator><creator>Feng, Miao</creator><creator>Zhou, Ke</creator><creator>He, Yiyan</creator><creator>Yang, Jun</creator><creator>Mao, Hongli</creator><creator>Gu, Zhongwei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1568-6047</orcidid><orcidid>https://orcid.org/0000-0003-0525-1290</orcidid></search><sort><creationdate>20230524</creationdate><title>Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing</title><author>Hao, Lili ; Tao, Xiwang ; Feng, Miao ; Zhou, Ke ; He, Yiyan ; Yang, Jun ; Mao, Hongli ; Gu, Zhongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f014084e77055b19446443ed50e56c7901ff205903a5f4fe9f91e4aa2b53dfed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Bioprinting - methods</topic><topic>Hydrogels - chemistry</topic><topic>Printing, Three-Dimensional</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Wound Healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Lili</creatorcontrib><creatorcontrib>Tao, Xiwang</creatorcontrib><creatorcontrib>Feng, Miao</creatorcontrib><creatorcontrib>Zhou, Ke</creatorcontrib><creatorcontrib>He, Yiyan</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Mao, Hongli</creatorcontrib><creatorcontrib>Gu, Zhongwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Lili</au><au>Tao, Xiwang</au><au>Feng, Miao</au><au>Zhou, Ke</au><au>He, Yiyan</au><au>Yang, Jun</au><au>Mao, Hongli</au><au>Gu, Zhongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-24</date><risdate>2023</risdate><volume>15</volume><issue>20</issue><spage>24034</spage><epage>24046</epage><pages>24034-24046</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4–20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30–37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene “click” reaction). The unique stepwise cross-linking mechanism promises the thermosensitive bioink appropriate viscosity at different printing stages, making it possible to print complex structures with excellent shape fidelity and simultaneously maintain the biological activity of cells. In vitro studies reveal that 3D-printed hydrogels are beneficial for enhancing cell viability. Further, in vivo experiments demonstrate that cell-laden printed hydrogels significantly promote wound healing and re-epithelialization by modulating inflammation and accelerating collagen deposition and angiogenesis. Therefore, the proposed stepwise multi-cross-linking strategy is expected to accelerate the development of novel bioinks and promote the clinical applications of 3D bioprinting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37159919</pmid><doi>10.1021/acsami.3c00688</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1568-6047</orcidid><orcidid>https://orcid.org/0000-0003-0525-1290</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (20), p.24034-24046
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2811941214
source MEDLINE; ACS Publications
subjects Biological and Medical Applications of Materials and Interfaces
Bioprinting - methods
Hydrogels - chemistry
Printing, Three-Dimensional
Tissue Engineering
Tissue Scaffolds - chemistry
Wound Healing
title Stepwise Multi-Cross-Linking Bioink for 3D Embedded Bioprinting to Promote Full-Thickness Wound Healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stepwise%20Multi-Cross-Linking%20Bioink%20for%203D%20Embedded%20Bioprinting%20to%20Promote%20Full-Thickness%20Wound%20Healing&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hao,%20Lili&rft.date=2023-05-24&rft.volume=15&rft.issue=20&rft.spage=24034&rft.epage=24046&rft.pages=24034-24046&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c00688&rft_dat=%3Cproquest_cross%3E2811941214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811941214&rft_id=info:pmid/37159919&rfr_iscdi=true