Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst

Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2023-07, Vol.29 (40), p.e202301135-n/a
Hauptverfasser: Wang, Wenhang, He, Ruosong, Wang, Yang, Li, Meng, Liu, Jianxin, Liang, Jiaming, Yasuda, Shuhei, Liu, Qiang, Wu, Mingbo, Tsubaki, Noritatsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e202301135
container_title Chemistry : a European journal
container_volume 29
creator Wang, Wenhang
He, Ruosong
Wang, Yang
Li, Meng
Liu, Jianxin
Liang, Jiaming
Yasuda, Shuhei
Liu, Qiang
Wu, Mingbo
Tsubaki, Noritatsu
description Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation. The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.
doi_str_mv 10.1002/chem.202301135
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811938883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838172855</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-3aa3961cae6f2949ae83678c32dfd2bf7f076aa2a2d7c07a69bc74d9dcf072e53</originalsourceid><addsrcrecordid>eNpdkc-KFDEQh4MoOK5ePQe8eOk1f6aTznFsVkfYYYRdvTY1SXo2SyYZkzSam4_gE_hwPondrOzBU1HUV18V_BB6TcklJYS903f2dMkI44RS3j5BK9oy2nAp2qdoRdRaNqLl6jl6kfM9IUQJzlfo9_sYc3HhiHe23EGI_s_PXztrHBRrcL9neFtNikcboLgYsAsl4k2Kp7nVGR8qvqnBpqObJRq8r_gWnI9pMe5_1HkPfwUNQVcMweCNdgbfuGLx5xTPNhVnM44j3k2-uHEKejkCHvdQwNdcXqJnI_hsX_2rF-jLh6vbfttc7z9-6jfXzZkJ0TYcgCtBNVgxMrVWYDsuZKc5M6Nhh1GORAoABsxITSQIddBybZTR84DZll-gtw_ec4rfJpvLcHJZW-8h2DjlgXWUKt51HZ_RN_-h93FK89MLxTsqWdcuQvVAfXfe1uGc3AlSHSgZlqyGJavhMauh317tHjv-F3eIjtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838172855</pqid></control><display><type>article</type><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><source>Access via Wiley Online Library</source><creator>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</creator><creatorcontrib>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</creatorcontrib><description>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation. The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202301135</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Aromatic compounds ; Carbon dioxide ; Catalysts ; Chemical synthesis ; Chemistry ; Chromium ; Chromium oxides ; CO2 hydrogenation ; Direct conversion ; Hydrogenation ; Metal oxides ; Metal-organic frameworks ; Methanol ; Oxidation ; Oxygen ; oxygen vacancy ; Performance enhancement ; Structure-function relationships ; synergistic effect ; zeolite ; Zeolites</subject><ispartof>Chemistry : a European journal, 2023-07, Vol.29 (40), p.e202301135-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6786-5058 ; 0000-0002-5758-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202301135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202301135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Liang, Jiaming</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><title>Chemistry : a European journal</title><description>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation. The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</description><subject>Acidic oxides</subject><subject>Aromatic compounds</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Chromium oxides</subject><subject>CO2 hydrogenation</subject><subject>Direct conversion</subject><subject>Hydrogenation</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Methanol</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>oxygen vacancy</subject><subject>Performance enhancement</subject><subject>Structure-function relationships</subject><subject>synergistic effect</subject><subject>zeolite</subject><subject>Zeolites</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc-KFDEQh4MoOK5ePQe8eOk1f6aTznFsVkfYYYRdvTY1SXo2SyYZkzSam4_gE_hwPondrOzBU1HUV18V_BB6TcklJYS903f2dMkI44RS3j5BK9oy2nAp2qdoRdRaNqLl6jl6kfM9IUQJzlfo9_sYc3HhiHe23EGI_s_PXztrHBRrcL9neFtNikcboLgYsAsl4k2Kp7nVGR8qvqnBpqObJRq8r_gWnI9pMe5_1HkPfwUNQVcMweCNdgbfuGLx5xTPNhVnM44j3k2-uHEKejkCHvdQwNdcXqJnI_hsX_2rF-jLh6vbfttc7z9-6jfXzZkJ0TYcgCtBNVgxMrVWYDsuZKc5M6Nhh1GORAoABsxITSQIddBybZTR84DZll-gtw_ec4rfJpvLcHJZW-8h2DjlgXWUKt51HZ_RN_-h93FK89MLxTsqWdcuQvVAfXfe1uGc3AlSHSgZlqyGJavhMauh317tHjv-F3eIjtg</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Wang, Wenhang</creator><creator>He, Ruosong</creator><creator>Wang, Yang</creator><creator>Li, Meng</creator><creator>Liu, Jianxin</creator><creator>Liang, Jiaming</creator><creator>Yasuda, Shuhei</creator><creator>Liu, Qiang</creator><creator>Wu, Mingbo</creator><creator>Tsubaki, Noritatsu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><orcidid>https://orcid.org/0000-0002-5758-1462</orcidid></search><sort><creationdate>20230714</creationdate><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><author>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-3aa3961cae6f2949ae83678c32dfd2bf7f076aa2a2d7c07a69bc74d9dcf072e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidic oxides</topic><topic>Aromatic compounds</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Chromium oxides</topic><topic>CO2 hydrogenation</topic><topic>Direct conversion</topic><topic>Hydrogenation</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Methanol</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>oxygen vacancy</topic><topic>Performance enhancement</topic><topic>Structure-function relationships</topic><topic>synergistic effect</topic><topic>zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Liang, Jiaming</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenhang</au><au>He, Ruosong</au><au>Wang, Yang</au><au>Li, Meng</au><au>Liu, Jianxin</au><au>Liang, Jiaming</au><au>Yasuda, Shuhei</au><au>Liu, Qiang</au><au>Wu, Mingbo</au><au>Tsubaki, Noritatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</atitle><jtitle>Chemistry : a European journal</jtitle><date>2023-07-14</date><risdate>2023</risdate><volume>29</volume><issue>40</issue><spage>e202301135</spage><epage>n/a</epage><pages>e202301135-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation. The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202301135</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><orcidid>https://orcid.org/0000-0002-5758-1462</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2023-07, Vol.29 (40), p.e202301135-n/a
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2811938883
source Access via Wiley Online Library
subjects Acidic oxides
Aromatic compounds
Carbon dioxide
Catalysts
Chemical synthesis
Chemistry
Chromium
Chromium oxides
CO2 hydrogenation
Direct conversion
Hydrogenation
Metal oxides
Metal-organic frameworks
Methanol
Oxidation
Oxygen
oxygen vacancy
Performance enhancement
Structure-function relationships
synergistic effect
zeolite
Zeolites
title Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Methanol%E2%80%90Mediated%20CO2%20Hydrogenation%20into%20Aromatics%20by%20Synergistically%20Tailoring%20Oxygen%20Vacancy%20and%20Acid%20Site%20Properties%20of%20Multifunctional%20Catalyst&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Wang,%20Wenhang&rft.date=2023-07-14&rft.volume=29&rft.issue=40&rft.spage=e202301135&rft.epage=n/a&rft.pages=e202301135-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202301135&rft_dat=%3Cproquest_wiley%3E2838172855%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838172855&rft_id=info:pmid/&rfr_iscdi=true