Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst
Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐f...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2023-07, Vol.29 (40), p.e202301135-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e202301135 |
container_title | Chemistry : a European journal |
container_volume | 29 |
creator | Wang, Wenhang He, Ruosong Wang, Yang Li, Meng Liu, Jianxin Liang, Jiaming Yasuda, Shuhei Liu, Qiang Wu, Mingbo Tsubaki, Noritatsu |
description | Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.
The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation. |
doi_str_mv | 10.1002/chem.202301135 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811938883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838172855</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2665-3aa3961cae6f2949ae83678c32dfd2bf7f076aa2a2d7c07a69bc74d9dcf072e53</originalsourceid><addsrcrecordid>eNpdkc-KFDEQh4MoOK5ePQe8eOk1f6aTznFsVkfYYYRdvTY1SXo2SyYZkzSam4_gE_hwPondrOzBU1HUV18V_BB6TcklJYS903f2dMkI44RS3j5BK9oy2nAp2qdoRdRaNqLl6jl6kfM9IUQJzlfo9_sYc3HhiHe23EGI_s_PXztrHBRrcL9neFtNikcboLgYsAsl4k2Kp7nVGR8qvqnBpqObJRq8r_gWnI9pMe5_1HkPfwUNQVcMweCNdgbfuGLx5xTPNhVnM44j3k2-uHEKejkCHvdQwNdcXqJnI_hsX_2rF-jLh6vbfttc7z9-6jfXzZkJ0TYcgCtBNVgxMrVWYDsuZKc5M6Nhh1GORAoABsxITSQIddBybZTR84DZll-gtw_ec4rfJpvLcHJZW-8h2DjlgXWUKt51HZ_RN_-h93FK89MLxTsqWdcuQvVAfXfe1uGc3AlSHSgZlqyGJavhMauh317tHjv-F3eIjtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838172855</pqid></control><display><type>article</type><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><source>Access via Wiley Online Library</source><creator>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</creator><creatorcontrib>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</creatorcontrib><description>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.
The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202301135</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Aromatic compounds ; Carbon dioxide ; Catalysts ; Chemical synthesis ; Chemistry ; Chromium ; Chromium oxides ; CO2 hydrogenation ; Direct conversion ; Hydrogenation ; Metal oxides ; Metal-organic frameworks ; Methanol ; Oxidation ; Oxygen ; oxygen vacancy ; Performance enhancement ; Structure-function relationships ; synergistic effect ; zeolite ; Zeolites</subject><ispartof>Chemistry : a European journal, 2023-07, Vol.29 (40), p.e202301135-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6786-5058 ; 0000-0002-5758-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202301135$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202301135$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Liang, Jiaming</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><title>Chemistry : a European journal</title><description>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.
The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</description><subject>Acidic oxides</subject><subject>Aromatic compounds</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Chromium oxides</subject><subject>CO2 hydrogenation</subject><subject>Direct conversion</subject><subject>Hydrogenation</subject><subject>Metal oxides</subject><subject>Metal-organic frameworks</subject><subject>Methanol</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>oxygen vacancy</subject><subject>Performance enhancement</subject><subject>Structure-function relationships</subject><subject>synergistic effect</subject><subject>zeolite</subject><subject>Zeolites</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkc-KFDEQh4MoOK5ePQe8eOk1f6aTznFsVkfYYYRdvTY1SXo2SyYZkzSam4_gE_hwPondrOzBU1HUV18V_BB6TcklJYS903f2dMkI44RS3j5BK9oy2nAp2qdoRdRaNqLl6jl6kfM9IUQJzlfo9_sYc3HhiHe23EGI_s_PXztrHBRrcL9neFtNikcboLgYsAsl4k2Kp7nVGR8qvqnBpqObJRq8r_gWnI9pMe5_1HkPfwUNQVcMweCNdgbfuGLx5xTPNhVnM44j3k2-uHEKejkCHvdQwNdcXqJnI_hsX_2rF-jLh6vbfttc7z9-6jfXzZkJ0TYcgCtBNVgxMrVWYDsuZKc5M6Nhh1GORAoABsxITSQIddBybZTR84DZll-gtw_ec4rfJpvLcHJZW-8h2DjlgXWUKt51HZ_RN_-h93FK89MLxTsqWdcuQvVAfXfe1uGc3AlSHSgZlqyGJavhMauh317tHjv-F3eIjtg</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Wang, Wenhang</creator><creator>He, Ruosong</creator><creator>Wang, Yang</creator><creator>Li, Meng</creator><creator>Liu, Jianxin</creator><creator>Liang, Jiaming</creator><creator>Yasuda, Shuhei</creator><creator>Liu, Qiang</creator><creator>Wu, Mingbo</creator><creator>Tsubaki, Noritatsu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><orcidid>https://orcid.org/0000-0002-5758-1462</orcidid></search><sort><creationdate>20230714</creationdate><title>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</title><author>Wang, Wenhang ; He, Ruosong ; Wang, Yang ; Li, Meng ; Liu, Jianxin ; Liang, Jiaming ; Yasuda, Shuhei ; Liu, Qiang ; Wu, Mingbo ; Tsubaki, Noritatsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2665-3aa3961cae6f2949ae83678c32dfd2bf7f076aa2a2d7c07a69bc74d9dcf072e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidic oxides</topic><topic>Aromatic compounds</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Chromium oxides</topic><topic>CO2 hydrogenation</topic><topic>Direct conversion</topic><topic>Hydrogenation</topic><topic>Metal oxides</topic><topic>Metal-organic frameworks</topic><topic>Methanol</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>oxygen vacancy</topic><topic>Performance enhancement</topic><topic>Structure-function relationships</topic><topic>synergistic effect</topic><topic>zeolite</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenhang</creatorcontrib><creatorcontrib>He, Ruosong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Liu, Jianxin</creatorcontrib><creatorcontrib>Liang, Jiaming</creatorcontrib><creatorcontrib>Yasuda, Shuhei</creatorcontrib><creatorcontrib>Liu, Qiang</creatorcontrib><creatorcontrib>Wu, Mingbo</creatorcontrib><creatorcontrib>Tsubaki, Noritatsu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenhang</au><au>He, Ruosong</au><au>Wang, Yang</au><au>Li, Meng</au><au>Liu, Jianxin</au><au>Liang, Jiaming</au><au>Yasuda, Shuhei</au><au>Liu, Qiang</au><au>Wu, Mingbo</au><au>Tsubaki, Noritatsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst</atitle><jtitle>Chemistry : a European journal</jtitle><date>2023-07-14</date><risdate>2023</risdate><volume>29</volume><issue>40</issue><spage>e202301135</spage><epage>n/a</epage><pages>e202301135-n/a</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Even though the direct hydrogenation of CO2 into aromatics has been realized via a methanol‐mediated pathway and multifunctional catalyst, few works have been focused on the simultaneously rational design of each component in multifunctional catalyst to improve the performance. Also, the structure‐function relationship between aromatics synthesis performance and the different catalytic components (reducible metal oxide and acidic zeolite) has been rarely investigated. Herein, we increase the oxygen vacancy (Ov) density in reducible Cr2O3 by sequential carbonization and oxidation (SCO) treatments of Cr‐based metal–organic frameworks. Thanks to the enriched Ov, Cr2O3‐based catalyst affords high methanol selectivity of 98.1 % (without CO) at a CO2 conversion of 16.8 % under high reaction temperature (350 °C). Furthermore, after combining with the acidic zeolite H‐ZSM‐5, the multifunctional catalyst realizes the direct conversion of CO2 into aromatics with conversion and selectivity as high as 25.4 % and 80.1 % (without CO), respectively. The property of acid site in H‐ZSM‐5, especially the Al species that located at the intersection of straight and sinusoidal channels, plays a vital role in enhancing the aromatics selectivity, which can be precisely controlled by varying the hydrothermal synthesis conditions. Our work provides a synergistic strategy to boost the aromatics synthesis performance from CO2 hydrogenation.
The synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst composed of Cr2O3 and H‐ZSM‐5 guarantees the superior aromatics synthesis performance of CO2 hydrogenation in a single‐pass. The structure‐function relationship between aromatics synthesis performance and the different catalytic components is well established to boost aromatics synthesis from CO2 hydrogenation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/chem.202301135</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6786-5058</orcidid><orcidid>https://orcid.org/0000-0002-5758-1462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2023-07, Vol.29 (40), p.e202301135-n/a |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_2811938883 |
source | Access via Wiley Online Library |
subjects | Acidic oxides Aromatic compounds Carbon dioxide Catalysts Chemical synthesis Chemistry Chromium Chromium oxides CO2 hydrogenation Direct conversion Hydrogenation Metal oxides Metal-organic frameworks Methanol Oxidation Oxygen oxygen vacancy Performance enhancement Structure-function relationships synergistic effect zeolite Zeolites |
title | Boosting Methanol‐Mediated CO2 Hydrogenation into Aromatics by Synergistically Tailoring Oxygen Vacancy and Acid Site Properties of Multifunctional Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Methanol%E2%80%90Mediated%20CO2%20Hydrogenation%20into%20Aromatics%20by%20Synergistically%20Tailoring%20Oxygen%20Vacancy%20and%20Acid%20Site%20Properties%20of%20Multifunctional%20Catalyst&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Wang,%20Wenhang&rft.date=2023-07-14&rft.volume=29&rft.issue=40&rft.spage=e202301135&rft.epage=n/a&rft.pages=e202301135-n/a&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202301135&rft_dat=%3Cproquest_wiley%3E2838172855%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2838172855&rft_id=info:pmid/&rfr_iscdi=true |