Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion
Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-03, Vol.31 (7), p.11019-11040 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11040 |
---|---|
container_issue | 7 |
container_start_page | 11019 |
container_title | Optics express |
container_volume | 31 |
creator | Ni, Dongwei Cheng, Dewen Wang, Yongdong Yang, Tong Wang, Ximeng Chi, Cheng Wang, Yongtian |
description | Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%. |
doi_str_mv | 10.1364/OE.481889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811569833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811569833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f8c38e57e2b7cd2bd379ce10490a46a4dc2f20fc3b1646048bb4c22b9e0b6b083</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EoqUw8AeQRxhS_ErsjKgtD6lSF5gj27lpjJI4xAlt_z2tWhDT_XR1dIaD0C0lU8oT8bhaTIWiSqVnaExJKiJBlDz_t0foKoRPQqiQqbxEIy5pHEshx0jPIbh1g3WT40KbzlndO9_gGvrS59gXuPSVX3e6LZ3FG_0N68HlgBvQXQQ7wLkLbaV3eOP6ErM5PvyM32LYtroJe9U1uih0FeDmdCfo43nxPnuNlquXt9nTMrKckT4qlOUKYgnMSJszk3OZWqBEpESLRIvcsoKRwnJDE5EQoYwRljGTAjGJIYpP0P3R23b-a4DQZ7ULFqpKN-CHkDFFaZykivM9-nBEbedD6KDI2s7VuttllGSHotlqkR2L7tm7k3YwNeR_5G9C_gMXYXEZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811569833</pqid></control><display><type>article</type><title>Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ni, Dongwei ; Cheng, Dewen ; Wang, Yongdong ; Yang, Tong ; Wang, Ximeng ; Chi, Cheng ; Wang, Yongtian</creator><creatorcontrib>Ni, Dongwei ; Cheng, Dewen ; Wang, Yongdong ; Yang, Tong ; Wang, Ximeng ; Chi, Cheng ; Wang, Yongtian</creatorcontrib><description>Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.481889</identifier><identifier>PMID: 37155747</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2023-03, Vol.31 (7), p.11019-11040</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f8c38e57e2b7cd2bd379ce10490a46a4dc2f20fc3b1646048bb4c22b9e0b6b083</citedby><cites>FETCH-LOGICAL-c320t-f8c38e57e2b7cd2bd379ce10490a46a4dc2f20fc3b1646048bb4c22b9e0b6b083</cites><orcidid>0000-0002-8525-3765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37155747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Dongwei</creatorcontrib><creatorcontrib>Cheng, Dewen</creatorcontrib><creatorcontrib>Wang, Yongdong</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Wang, Ximeng</creatorcontrib><creatorcontrib>Chi, Cheng</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><title>Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAURi0EoqUw8AeQRxhS_ErsjKgtD6lSF5gj27lpjJI4xAlt_z2tWhDT_XR1dIaD0C0lU8oT8bhaTIWiSqVnaExJKiJBlDz_t0foKoRPQqiQqbxEIy5pHEshx0jPIbh1g3WT40KbzlndO9_gGvrS59gXuPSVX3e6LZ3FG_0N68HlgBvQXQQ7wLkLbaV3eOP6ErM5PvyM32LYtroJe9U1uih0FeDmdCfo43nxPnuNlquXt9nTMrKckT4qlOUKYgnMSJszk3OZWqBEpESLRIvcsoKRwnJDE5EQoYwRljGTAjGJIYpP0P3R23b-a4DQZ7ULFqpKN-CHkDFFaZykivM9-nBEbedD6KDI2s7VuttllGSHotlqkR2L7tm7k3YwNeR_5G9C_gMXYXEZ</recordid><startdate>20230327</startdate><enddate>20230327</enddate><creator>Ni, Dongwei</creator><creator>Cheng, Dewen</creator><creator>Wang, Yongdong</creator><creator>Yang, Tong</creator><creator>Wang, Ximeng</creator><creator>Chi, Cheng</creator><creator>Wang, Yongtian</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8525-3765</orcidid></search><sort><creationdate>20230327</creationdate><title>Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion</title><author>Ni, Dongwei ; Cheng, Dewen ; Wang, Yongdong ; Yang, Tong ; Wang, Ximeng ; Chi, Cheng ; Wang, Yongtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f8c38e57e2b7cd2bd379ce10490a46a4dc2f20fc3b1646048bb4c22b9e0b6b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Dongwei</creatorcontrib><creatorcontrib>Cheng, Dewen</creatorcontrib><creatorcontrib>Wang, Yongdong</creatorcontrib><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Wang, Ximeng</creatorcontrib><creatorcontrib>Chi, Cheng</creatorcontrib><creatorcontrib>Wang, Yongtian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Dongwei</au><au>Cheng, Dewen</au><au>Wang, Yongdong</au><au>Yang, Tong</au><au>Wang, Ximeng</au><au>Chi, Cheng</au><au>Wang, Yongtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2023-03-27</date><risdate>2023</risdate><volume>31</volume><issue>7</issue><spage>11019</spage><epage>11040</epage><pages>11019-11040</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.</abstract><cop>United States</cop><pmid>37155747</pmid><doi>10.1364/OE.481889</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8525-3765</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2023-03, Vol.31 (7), p.11019-11040 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2811569833 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20fabrication%20method%20of%20holographic%20waveguide%20near-eye%20display%20with%202D%20eye%20box%20expansion&rft.jtitle=Optics%20express&rft.au=Ni,%20Dongwei&rft.date=2023-03-27&rft.volume=31&rft.issue=7&rft.spage=11019&rft.epage=11040&rft.pages=11019-11040&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.481889&rft_dat=%3Cproquest_cross%3E2811569833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811569833&rft_id=info:pmid/37155747&rfr_iscdi=true |