Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins
To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recogn...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2023-05, Vol.95 (20), p.7993-8001 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8001 |
---|---|
container_issue | 20 |
container_start_page | 7993 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Xiang, Xinran Song, Minghui Xu, Xiaowei Lu, Jiaran Chen, Yuanyuan Chen, Shuhan He, Yinglong Shang, Yuting |
description | To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation |
doi_str_mv | 10.1021/acs.analchem.3c00813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811566762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818954116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EapfSf4CQJS69ZBnbiZMcS9VCpS4caM-RY0-6rhJ7sR3o_o7-YbzstgcOnEYz-t4b6T1C3jNYMuDsk9JxqZwa9RqnpdAADROvyIJVHArZNPw1WQCAKHgNcEzexvgAwBgweUSORc0qCa1ckKeV1cEP42yN1fSz9RFd9IFeu4T3QSU09LdNa_rD3udf9DYoF82sk_WOKmfopVsrp3FCl-gKdV5snOiQHe7GFNTOzSb7C-k377SfNpj263mMakv9QFfzmOxmRLraap_8o3XxHXkzqDHi6WGekLury9uLr8XN9y_XF-c3hRK1TEXbG6Z5D1zU2PalLPuBYW2qtjEaDfb1wErNUJW8L6Gvpe6hERohH7SuRClOyNnedxP8zxlj6iYbNY6jcujn2PGG5ZhkLXlGP_6DPvg55ET-Uk1blYzJTJV7KkcaY8Ch2wQ7qbDtGHS70rpcWvdcWncoLcs-HMznfkLzInpuKQOwB3byl8f_9fwD2Lyqcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818954116</pqid></control><display><type>article</type><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</creator><creatorcontrib>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</creatorcontrib><description>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation <5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00813</identifier><identifier>PMID: 37156096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biological Assay ; Biosensing Techniques ; Biosensors ; Chemistry ; Chromatography, High Pressure Liquid ; Coefficient of variation ; CRISPR ; CRISPR-Cas Systems ; Crystals ; Deoxyribonucleic acid ; DNA ; Food safety ; Gene sequencing ; Liquid chromatography ; Low concentrations ; Mathematical analysis ; Microfluidics ; Mycotoxins ; Nucleotide sequence ; Photonic band gaps ; Photonic crystals ; Quantum dots ; Signal Transduction ; Switches</subject><ispartof>Analytical chemistry (Washington), 2023-05, Vol.95 (20), p.7993-8001</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society May 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</citedby><cites>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</cites><orcidid>0000-0002-1139-9438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c00813$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c00813$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37156096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Xinran</creatorcontrib><creatorcontrib>Song, Minghui</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Lu, Jiaran</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>He, Yinglong</creatorcontrib><creatorcontrib>Shang, Yuting</creatorcontrib><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation <5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</description><subject>Analytical chemistry</subject><subject>Biological Assay</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Coefficient of variation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Food safety</subject><subject>Gene sequencing</subject><subject>Liquid chromatography</subject><subject>Low concentrations</subject><subject>Mathematical analysis</subject><subject>Microfluidics</subject><subject>Mycotoxins</subject><subject>Nucleotide sequence</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Quantum dots</subject><subject>Signal Transduction</subject><subject>Switches</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EapfSf4CQJS69ZBnbiZMcS9VCpS4caM-RY0-6rhJ7sR3o_o7-YbzstgcOnEYz-t4b6T1C3jNYMuDsk9JxqZwa9RqnpdAADROvyIJVHArZNPw1WQCAKHgNcEzexvgAwBgweUSORc0qCa1ckKeV1cEP42yN1fSz9RFd9IFeu4T3QSU09LdNa_rD3udf9DYoF82sk_WOKmfopVsrp3FCl-gKdV5snOiQHe7GFNTOzSb7C-k377SfNpj263mMakv9QFfzmOxmRLraap_8o3XxHXkzqDHi6WGekLury9uLr8XN9y_XF-c3hRK1TEXbG6Z5D1zU2PalLPuBYW2qtjEaDfb1wErNUJW8L6Gvpe6hERohH7SuRClOyNnedxP8zxlj6iYbNY6jcujn2PGG5ZhkLXlGP_6DPvg55ET-Uk1blYzJTJV7KkcaY8Ch2wQ7qbDtGHS70rpcWvdcWncoLcs-HMznfkLzInpuKQOwB3byl8f_9fwD2Lyqcg</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Xiang, Xinran</creator><creator>Song, Minghui</creator><creator>Xu, Xiaowei</creator><creator>Lu, Jiaran</creator><creator>Chen, Yuanyuan</creator><creator>Chen, Shuhan</creator><creator>He, Yinglong</creator><creator>Shang, Yuting</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1139-9438</orcidid></search><sort><creationdate>20230523</creationdate><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><author>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Biological Assay</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Coefficient of variation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Food safety</topic><topic>Gene sequencing</topic><topic>Liquid chromatography</topic><topic>Low concentrations</topic><topic>Mathematical analysis</topic><topic>Microfluidics</topic><topic>Mycotoxins</topic><topic>Nucleotide sequence</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Quantum dots</topic><topic>Signal Transduction</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Xinran</creatorcontrib><creatorcontrib>Song, Minghui</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Lu, Jiaran</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>He, Yinglong</creatorcontrib><creatorcontrib>Shang, Yuting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Xinran</au><au>Song, Minghui</au><au>Xu, Xiaowei</au><au>Lu, Jiaran</au><au>Chen, Yuanyuan</au><au>Chen, Shuhan</au><au>He, Yinglong</au><au>Shang, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-05-23</date><risdate>2023</risdate><volume>95</volume><issue>20</issue><spage>7993</spage><epage>8001</epage><pages>7993-8001</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation <5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37156096</pmid><doi>10.1021/acs.analchem.3c00813</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1139-9438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-05, Vol.95 (20), p.7993-8001 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2811566762 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Biological Assay Biosensing Techniques Biosensors Chemistry Chromatography, High Pressure Liquid Coefficient of variation CRISPR CRISPR-Cas Systems Crystals Deoxyribonucleic acid DNA Food safety Gene sequencing Liquid chromatography Low concentrations Mathematical analysis Microfluidics Mycotoxins Nucleotide sequence Photonic band gaps Photonic crystals Quantum dots Signal Transduction Switches |
title | Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Biosensor%20Integrated%20with%20Signal%20Transduction%20and%20Enhancement%20Mechanism%20for%20Ultrasensitive%20Noncompetitive%20Assay%20of%20Multiple%20Mycotoxins&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Xiang,%20Xinran&rft.date=2023-05-23&rft.volume=95&rft.issue=20&rft.spage=7993&rft.epage=8001&rft.pages=7993-8001&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00813&rft_dat=%3Cproquest_cross%3E2818954116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818954116&rft_id=info:pmid/37156096&rfr_iscdi=true |