Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins

To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recogn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-05, Vol.95 (20), p.7993-8001
Hauptverfasser: Xiang, Xinran, Song, Minghui, Xu, Xiaowei, Lu, Jiaran, Chen, Yuanyuan, Chen, Shuhan, He, Yinglong, Shang, Yuting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8001
container_issue 20
container_start_page 7993
container_title Analytical chemistry (Washington)
container_volume 95
creator Xiang, Xinran
Song, Minghui
Xu, Xiaowei
Lu, Jiaran
Chen, Yuanyuan
Chen, Shuhan
He, Yinglong
Shang, Yuting
description To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation
doi_str_mv 10.1021/acs.analchem.3c00813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2811566762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2818954116</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EapfSf4CQJS69ZBnbiZMcS9VCpS4caM-RY0-6rhJ7sR3o_o7-YbzstgcOnEYz-t4b6T1C3jNYMuDsk9JxqZwa9RqnpdAADROvyIJVHArZNPw1WQCAKHgNcEzexvgAwBgweUSORc0qCa1ckKeV1cEP42yN1fSz9RFd9IFeu4T3QSU09LdNa_rD3udf9DYoF82sk_WOKmfopVsrp3FCl-gKdV5snOiQHe7GFNTOzSb7C-k377SfNpj263mMakv9QFfzmOxmRLraap_8o3XxHXkzqDHi6WGekLury9uLr8XN9y_XF-c3hRK1TEXbG6Z5D1zU2PalLPuBYW2qtjEaDfb1wErNUJW8L6Gvpe6hERohH7SuRClOyNnedxP8zxlj6iYbNY6jcujn2PGG5ZhkLXlGP_6DPvg55ET-Uk1blYzJTJV7KkcaY8Ch2wQ7qbDtGHS70rpcWvdcWncoLcs-HMznfkLzInpuKQOwB3byl8f_9fwD2Lyqcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2818954116</pqid></control><display><type>article</type><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><source>MEDLINE</source><source>ACS Publications</source><creator>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</creator><creatorcontrib>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</creatorcontrib><description>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation &lt;5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c00813</identifier><identifier>PMID: 37156096</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biological Assay ; Biosensing Techniques ; Biosensors ; Chemistry ; Chromatography, High Pressure Liquid ; Coefficient of variation ; CRISPR ; CRISPR-Cas Systems ; Crystals ; Deoxyribonucleic acid ; DNA ; Food safety ; Gene sequencing ; Liquid chromatography ; Low concentrations ; Mathematical analysis ; Microfluidics ; Mycotoxins ; Nucleotide sequence ; Photonic band gaps ; Photonic crystals ; Quantum dots ; Signal Transduction ; Switches</subject><ispartof>Analytical chemistry (Washington), 2023-05, Vol.95 (20), p.7993-8001</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society May 23, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</citedby><cites>FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</cites><orcidid>0000-0002-1139-9438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.3c00813$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.3c00813$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37156096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Xinran</creatorcontrib><creatorcontrib>Song, Minghui</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Lu, Jiaran</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>He, Yinglong</creatorcontrib><creatorcontrib>Shang, Yuting</creatorcontrib><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation &lt;5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</description><subject>Analytical chemistry</subject><subject>Biological Assay</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Coefficient of variation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Food safety</subject><subject>Gene sequencing</subject><subject>Liquid chromatography</subject><subject>Low concentrations</subject><subject>Mathematical analysis</subject><subject>Microfluidics</subject><subject>Mycotoxins</subject><subject>Nucleotide sequence</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Quantum dots</subject><subject>Signal Transduction</subject><subject>Switches</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EapfSf4CQJS69ZBnbiZMcS9VCpS4caM-RY0-6rhJ7sR3o_o7-YbzstgcOnEYz-t4b6T1C3jNYMuDsk9JxqZwa9RqnpdAADROvyIJVHArZNPw1WQCAKHgNcEzexvgAwBgweUSORc0qCa1ckKeV1cEP42yN1fSz9RFd9IFeu4T3QSU09LdNa_rD3udf9DYoF82sk_WOKmfopVsrp3FCl-gKdV5snOiQHe7GFNTOzSb7C-k377SfNpj263mMakv9QFfzmOxmRLraap_8o3XxHXkzqDHi6WGekLury9uLr8XN9y_XF-c3hRK1TEXbG6Z5D1zU2PalLPuBYW2qtjEaDfb1wErNUJW8L6Gvpe6hERohH7SuRClOyNnedxP8zxlj6iYbNY6jcujn2PGG5ZhkLXlGP_6DPvg55ET-Uk1blYzJTJV7KkcaY8Ch2wQ7qbDtGHS70rpcWvdcWncoLcs-HMznfkLzInpuKQOwB3byl8f_9fwD2Lyqcg</recordid><startdate>20230523</startdate><enddate>20230523</enddate><creator>Xiang, Xinran</creator><creator>Song, Minghui</creator><creator>Xu, Xiaowei</creator><creator>Lu, Jiaran</creator><creator>Chen, Yuanyuan</creator><creator>Chen, Shuhan</creator><creator>He, Yinglong</creator><creator>Shang, Yuting</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1139-9438</orcidid></search><sort><creationdate>20230523</creationdate><title>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</title><author>Xiang, Xinran ; Song, Minghui ; Xu, Xiaowei ; Lu, Jiaran ; Chen, Yuanyuan ; Chen, Shuhan ; He, Yinglong ; Shang, Yuting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-9bd1c2b0237e9b464bf1e7d598dcedeb7f14c1ea42b40b76cb083ce0a42cc5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Biological Assay</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Coefficient of variation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Food safety</topic><topic>Gene sequencing</topic><topic>Liquid chromatography</topic><topic>Low concentrations</topic><topic>Mathematical analysis</topic><topic>Microfluidics</topic><topic>Mycotoxins</topic><topic>Nucleotide sequence</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Quantum dots</topic><topic>Signal Transduction</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Xinran</creatorcontrib><creatorcontrib>Song, Minghui</creatorcontrib><creatorcontrib>Xu, Xiaowei</creatorcontrib><creatorcontrib>Lu, Jiaran</creatorcontrib><creatorcontrib>Chen, Yuanyuan</creatorcontrib><creatorcontrib>Chen, Shuhan</creatorcontrib><creatorcontrib>He, Yinglong</creatorcontrib><creatorcontrib>Shang, Yuting</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Xinran</au><au>Song, Minghui</au><au>Xu, Xiaowei</au><au>Lu, Jiaran</au><au>Chen, Yuanyuan</au><au>Chen, Shuhan</au><au>He, Yinglong</au><au>Shang, Yuting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-05-23</date><risdate>2023</risdate><volume>95</volume><issue>20</issue><spage>7993</spage><epage>8001</epage><pages>7993-8001</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>To achieve high-throughput ultrasensitive detection of mycotoxins in food, a functional DNA-guided transition-state CRISPR/Cas12a microfluidic biosensor (named FTMB) was successfully constructed. The signal transduction CRISPR/Cas12a strategy in FTMB has utilized DNA sequences with a specific recognition function and activators to form trigger switches. Meanwhile, the transition-state CRISPR/Cas12a system was constructed by adjusting the composition ratio of crRNA and activator to achieve a high response for low concentrations of target mycotoxins. On the other hand, the signal enhancement of FTMB has efficiently integrated the signal output of quantum dots (QDs) with the fluorescence enhancement effect of photonic crystals (PCs). The construction of universal QDs for the CRISPR/Cas12a system and PC films matching the photonic bandgap produced a significant signal enhancement by a factor of 45.6. Overall, FTMB exhibited a wide analytic range (10–5–101 ng·mL–1), low detection of limit (fg·mL–1), short detection period (∼40 min), high specificity, good precision (coefficients of variation &lt;5%), and satisfactory practical sample analysis capacity (the consistency with HPLC at 88.76%–109.99%). It would provide a new and reliable solution for the rapid detection of multiple small molecules in the fields of clinical diagnosis and food safety.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37156096</pmid><doi>10.1021/acs.analchem.3c00813</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1139-9438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-05, Vol.95 (20), p.7993-8001
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2811566762
source MEDLINE; ACS Publications
subjects Analytical chemistry
Biological Assay
Biosensing Techniques
Biosensors
Chemistry
Chromatography, High Pressure Liquid
Coefficient of variation
CRISPR
CRISPR-Cas Systems
Crystals
Deoxyribonucleic acid
DNA
Food safety
Gene sequencing
Liquid chromatography
Low concentrations
Mathematical analysis
Microfluidics
Mycotoxins
Nucleotide sequence
Photonic band gaps
Photonic crystals
Quantum dots
Signal Transduction
Switches
title Microfluidic Biosensor Integrated with Signal Transduction and Enhancement Mechanism for Ultrasensitive Noncompetitive Assay of Multiple Mycotoxins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Biosensor%20Integrated%20with%20Signal%20Transduction%20and%20Enhancement%20Mechanism%20for%20Ultrasensitive%20Noncompetitive%20Assay%20of%20Multiple%20Mycotoxins&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Xiang,%20Xinran&rft.date=2023-05-23&rft.volume=95&rft.issue=20&rft.spage=7993&rft.epage=8001&rft.pages=7993-8001&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c00813&rft_dat=%3Cproquest_cross%3E2818954116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2818954116&rft_id=info:pmid/37156096&rfr_iscdi=true