Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry

The reactions of discharged Li4/3Ti5/3O4 (Li7/3Ti5/3O4) or discharged mesocarbon microbead (Li0.81C6) with ethylene carbonate/diethyl carbonate (EC/DEC) (1:2 by volume) solvent, 1 M LiPF6 EC/DEC or 0.8 M LiBOB EC/DEC are compared using accelerating rate calorimetry (ARC). We find that Li-13Ti513O4 (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2004, Vol.151 (12), p.A2082-A2087
Hauptverfasser: JUNWEI JIANG, JUN CHEN, DAHN, J. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A2087
container_issue 12
container_start_page A2082
container_title Journal of the Electrochemical Society
container_volume 151
creator JUNWEI JIANG
JUN CHEN
DAHN, J. R
description The reactions of discharged Li4/3Ti5/3O4 (Li7/3Ti5/3O4) or discharged mesocarbon microbead (Li0.81C6) with ethylene carbonate/diethyl carbonate (EC/DEC) (1:2 by volume) solvent, 1 M LiPF6 EC/DEC or 0.8 M LiBOB EC/DEC are compared using accelerating rate calorimetry (ARC). We find that Li-13Ti513O4 (1.5 V vs. Li) shows lower reactivity than Li0.81C6 (0.05 V vs. Li) in EC/DEC solvent or in LiPF6-based electrolyte. The reactions between both electrodes and 1 M LiPF6 EC/DEC proceed in a clear stepwise fashion, where first, intercalated lithium reacts with PF5 (from the decomposition of LiPF6) to produce LiF, and then, when the PF5 is consumed, the remaining lithium reacts with the solvents. The addition of 0.8 M LiBOB to EC/DEC solvent greatly increases the thermal stability of both Li7/3Ti5/3O4 and Li0.81C6. X-ray diffraction (XRD) studies show that both Li7/3Ti5/3O4 and Li0.81C6 react with EC/DEC or LiBOB EC/DEC to produce Li2CO3 at the end of the ARC experiments. XRD studies show that Li7/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to form LiF, Li4/3Ti5/3O4, Li2CO3, and some TiO2. In fact, even a fresh sample of Li4/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to produce substantial quantities of TiO2 and LiF, but little heat is evolved during this reaction since the Li in Li4/3Ti5/3O4 is so tightly bound. The results in this paper suggest that safer lithium-ion cells could be built using Li4/3Ti5/3O4 negative electrodes than with graphite negative electrodes.
doi_str_mv 10.1149/1.1817698
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28114858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28114858</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-5c46ce35c635816e50b293ed8115523bc5b25ab2733435fee5f3efb9e243aca63</originalsourceid><addsrcrecordid>eNotj0tPwzAQhC0EEqVw4B_4Are0Wb-SHFHES6rUSzlHjrsBo9QOtgvqnR-OK3oaze5o9A0ht1AuAESzhAXUUKmmPiMzaIQsKgA4J7OyBF4IJeGSXMX4mS3UopqR39bvJh1s9I76gaYPpAG1Sda7SHtMP4iOrmy15Bsrl3wtqA_Zt4pqt6XOO_21R7-PNPrxG12Kxz-OaFLw4yFhpPto3TvVxuRr0OlosiA1evTB7jCFwzW5GPQY8eakc_L29LhpX4rV-vm1fVgVEwiVCmmEMsilUVzWoFCWPWs4bmsAKRnvjeyZ1D2rOBdcDohy4Dj0DTLBtdGKz8n9f-8UfMaOqdvZmLlG7Y4bOpabRC3rHLw7BXXMnEPQztjYTZlXh0MHijOhypL_AdMrcJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28114858</pqid></control><display><type>article</type><title>Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry</title><source>IOP Publishing Journals</source><creator>JUNWEI JIANG ; JUN CHEN ; DAHN, J. R</creator><creatorcontrib>JUNWEI JIANG ; JUN CHEN ; DAHN, J. R</creatorcontrib><description>The reactions of discharged Li4/3Ti5/3O4 (Li7/3Ti5/3O4) or discharged mesocarbon microbead (Li0.81C6) with ethylene carbonate/diethyl carbonate (EC/DEC) (1:2 by volume) solvent, 1 M LiPF6 EC/DEC or 0.8 M LiBOB EC/DEC are compared using accelerating rate calorimetry (ARC). We find that Li-13Ti513O4 (1.5 V vs. Li) shows lower reactivity than Li0.81C6 (0.05 V vs. Li) in EC/DEC solvent or in LiPF6-based electrolyte. The reactions between both electrodes and 1 M LiPF6 EC/DEC proceed in a clear stepwise fashion, where first, intercalated lithium reacts with PF5 (from the decomposition of LiPF6) to produce LiF, and then, when the PF5 is consumed, the remaining lithium reacts with the solvents. The addition of 0.8 M LiBOB to EC/DEC solvent greatly increases the thermal stability of both Li7/3Ti5/3O4 and Li0.81C6. X-ray diffraction (XRD) studies show that both Li7/3Ti5/3O4 and Li0.81C6 react with EC/DEC or LiBOB EC/DEC to produce Li2CO3 at the end of the ARC experiments. XRD studies show that Li7/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to form LiF, Li4/3Ti5/3O4, Li2CO3, and some TiO2. In fact, even a fresh sample of Li4/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to produce substantial quantities of TiO2 and LiF, but little heat is evolved during this reaction since the Li in Li4/3Ti5/3O4 is so tightly bound. The results in this paper suggest that safer lithium-ion cells could be built using Li4/3Ti5/3O4 negative electrodes than with graphite negative electrodes.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.1817698</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology</subject><ispartof>Journal of the Electrochemical Society, 2004, Vol.151 (12), p.A2082-A2087</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16324600$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>JUNWEI JIANG</creatorcontrib><creatorcontrib>JUN CHEN</creatorcontrib><creatorcontrib>DAHN, J. R</creatorcontrib><title>Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry</title><title>Journal of the Electrochemical Society</title><description>The reactions of discharged Li4/3Ti5/3O4 (Li7/3Ti5/3O4) or discharged mesocarbon microbead (Li0.81C6) with ethylene carbonate/diethyl carbonate (EC/DEC) (1:2 by volume) solvent, 1 M LiPF6 EC/DEC or 0.8 M LiBOB EC/DEC are compared using accelerating rate calorimetry (ARC). We find that Li-13Ti513O4 (1.5 V vs. Li) shows lower reactivity than Li0.81C6 (0.05 V vs. Li) in EC/DEC solvent or in LiPF6-based electrolyte. The reactions between both electrodes and 1 M LiPF6 EC/DEC proceed in a clear stepwise fashion, where first, intercalated lithium reacts with PF5 (from the decomposition of LiPF6) to produce LiF, and then, when the PF5 is consumed, the remaining lithium reacts with the solvents. The addition of 0.8 M LiBOB to EC/DEC solvent greatly increases the thermal stability of both Li7/3Ti5/3O4 and Li0.81C6. X-ray diffraction (XRD) studies show that both Li7/3Ti5/3O4 and Li0.81C6 react with EC/DEC or LiBOB EC/DEC to produce Li2CO3 at the end of the ARC experiments. XRD studies show that Li7/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to form LiF, Li4/3Ti5/3O4, Li2CO3, and some TiO2. In fact, even a fresh sample of Li4/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to produce substantial quantities of TiO2 and LiF, but little heat is evolved during this reaction since the Li in Li4/3Ti5/3O4 is so tightly bound. The results in this paper suggest that safer lithium-ion cells could be built using Li4/3Ti5/3O4 negative electrodes than with graphite negative electrodes.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotj0tPwzAQhC0EEqVw4B_4Are0Wb-SHFHES6rUSzlHjrsBo9QOtgvqnR-OK3oaze5o9A0ht1AuAESzhAXUUKmmPiMzaIQsKgA4J7OyBF4IJeGSXMX4mS3UopqR39bvJh1s9I76gaYPpAG1Sda7SHtMP4iOrmy15Bsrl3wtqA_Zt4pqt6XOO_21R7-PNPrxG12Kxz-OaFLw4yFhpPto3TvVxuRr0OlosiA1evTB7jCFwzW5GPQY8eakc_L29LhpX4rV-vm1fVgVEwiVCmmEMsilUVzWoFCWPWs4bmsAKRnvjeyZ1D2rOBdcDohy4Dj0DTLBtdGKz8n9f-8UfMaOqdvZmLlG7Y4bOpabRC3rHLw7BXXMnEPQztjYTZlXh0MHijOhypL_AdMrcJY</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>JUNWEI JIANG</creator><creator>JUN CHEN</creator><creator>DAHN, J. R</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>2004</creationdate><title>Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry</title><author>JUNWEI JIANG ; JUN CHEN ; DAHN, J. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-5c46ce35c635816e50b293ed8115523bc5b25ab2733435fee5f3efb9e243aca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JUNWEI JIANG</creatorcontrib><creatorcontrib>JUN CHEN</creatorcontrib><creatorcontrib>DAHN, J. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JUNWEI JIANG</au><au>JUN CHEN</au><au>DAHN, J. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>2004</date><risdate>2004</risdate><volume>151</volume><issue>12</issue><spage>A2082</spage><epage>A2087</epage><pages>A2082-A2087</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>The reactions of discharged Li4/3Ti5/3O4 (Li7/3Ti5/3O4) or discharged mesocarbon microbead (Li0.81C6) with ethylene carbonate/diethyl carbonate (EC/DEC) (1:2 by volume) solvent, 1 M LiPF6 EC/DEC or 0.8 M LiBOB EC/DEC are compared using accelerating rate calorimetry (ARC). We find that Li-13Ti513O4 (1.5 V vs. Li) shows lower reactivity than Li0.81C6 (0.05 V vs. Li) in EC/DEC solvent or in LiPF6-based electrolyte. The reactions between both electrodes and 1 M LiPF6 EC/DEC proceed in a clear stepwise fashion, where first, intercalated lithium reacts with PF5 (from the decomposition of LiPF6) to produce LiF, and then, when the PF5 is consumed, the remaining lithium reacts with the solvents. The addition of 0.8 M LiBOB to EC/DEC solvent greatly increases the thermal stability of both Li7/3Ti5/3O4 and Li0.81C6. X-ray diffraction (XRD) studies show that both Li7/3Ti5/3O4 and Li0.81C6 react with EC/DEC or LiBOB EC/DEC to produce Li2CO3 at the end of the ARC experiments. XRD studies show that Li7/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to form LiF, Li4/3Ti5/3O4, Li2CO3, and some TiO2. In fact, even a fresh sample of Li4/3Ti5/3O4 reacts with 1 M LiPF6 EC/DEC to produce substantial quantities of TiO2 and LiF, but little heat is evolved during this reaction since the Li in Li4/3Ti5/3O4 is so tightly bound. The results in this paper suggest that safer lithium-ion cells could be built using Li4/3Ti5/3O4 negative electrodes than with graphite negative electrodes.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.1817698</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 2004, Vol.151 (12), p.A2082-A2087
issn 0013-4651
1945-7111
language eng
recordid cdi_proquest_miscellaneous_28114858
source IOP Publishing Journals
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
title Comparison of the reactions between Li7/3Ti5/3O4 or LiC6 and nonaqueous solvents or electrolytes using accelerating rate calorimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20reactions%20between%20Li7/3Ti5/3O4%20or%20LiC6%20and%20nonaqueous%20solvents%20or%20electrolytes%20using%20accelerating%20rate%20calorimetry&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=JUNWEI%20JIANG&rft.date=2004&rft.volume=151&rft.issue=12&rft.spage=A2082&rft.epage=A2087&rft.pages=A2082-A2087&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.1817698&rft_dat=%3Cproquest_pasca%3E28114858%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28114858&rft_id=info:pmid/&rfr_iscdi=true