Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification

This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2023-11, Vol.396 (11), p.3045-3059
Hauptverfasser: Yang, Ye, Yan, Jiaoyan, Huang, Jian, Wu, Xiangyi, Yuan, Yan, Zhang, Shu, Mo, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3059
container_issue 11
container_start_page 3045
container_title Naunyn-Schmiedeberg's archives of pharmacology
container_volume 396
creator Yang, Ye
Yan, Jiaoyan
Huang, Jian
Wu, Xiangyi
Yuan, Yan
Yuan, Yan
Zhang, Shu
Mo, Fei
description This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-resistance genes and constructed the expression profile of quercetin chemosensitization. The overlapping targets were input into the STRING database and used Cytoscape v3.9.0 to construct the protein–protein interaction (PPI) network. Subsequently, these targets were performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses and molecular docking. Finally, we further detected the potential role of quercetin in improving PTX sensitivity in BC in vitro experiments. Compounds and targets screening hinted that 220 quercetin predicted targets, 244 BC PTX resistance-related genes, and 66 potential sensitive target genes (PSTGs). Network pharmacology screening revealed the top-15 crucial targets in PPI network of quercetin reversing the sensitivity of BC to PTX. KEGG analysis revealed that they were mainly enriched in the EGFR/ERK signaling pathway. Molecular docking showed that both quercetin and PTX could stably bind to the key targets in the EGFR/ERK signaling pathway. In vitro experiments further confirmed that quercetin inhibited the key targets in the EGFR/ERK axis to the suppression of cell proliferation and promotion of apoptosis in PTX-resistance BC cells, and restoring the activity of the resistant cells to PTX. Our results suggested that quercetin increased the sensitivity of BC to PTX through inhibiting EGFR/ERK axis, and it is an effective treatment for reversing PTX resistance.
doi_str_mv 10.1007/s00210-023-02510-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2810920926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2875638211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-2f329d8565b16a54a3b2063dc4b09044af720f7017f3aeef6326e91dce4a292c3</originalsourceid><addsrcrecordid>eNp9kUtrFTEUgIMo9rb6B1xIwI2LjuYxT3dS-hAKbnQdzmTOdNJmkjHJtPf6W_pjTXurggshIQfynRcfIW84-8AZaz5GxgRnBRMy3ypH3TOy4aUUBe-4eE42-b8tuOjaA3IY4zVjrOZV9ZIcyIaXbcn4htyfbhfrg3FXNE1IZ9QTOBNn2u_o3WT0RH-sGDQm42jAIqKLJpmfGGkfEGKiGpzGQJOnC2hrEmzRfqIO050PN3SZIMygvfVXu2M6e4t6tRDo4PVN7nlMwQ0UtwsGM6NLYOltDkejIRnvXpEXI9iIr5_eI_L97PTbyUVx-fX8y8nny0LLpkqFGKXohraqq57XUJUge8FqOeiyZx0rSxgbwcaG8WaUgDjWUtTY8UFjCaITWh6R9_u6S_B53ZjUbKJGa8GhX6MSLWedyKfO6Lt_0Gu_Bpeny1RT1bIVnGdK7CkdfIwBR7XkBSHsFGfqwZ3au1PZnXp0p7qc9Pap9NrPOPxJ-S0rA3IPxOVBGIa_vf9T9hfEcKdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2875638211</pqid></control><display><type>article</type><title>Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Yang, Ye ; Yan, Jiaoyan ; Huang, Jian ; Wu, Xiangyi ; Yuan, Yan ; Yuan, Yan ; Zhang, Shu ; Mo, Fei</creator><creatorcontrib>Yang, Ye ; Yan, Jiaoyan ; Huang, Jian ; Wu, Xiangyi ; Yuan, Yan ; Yuan, Yan ; Zhang, Shu ; Mo, Fei</creatorcontrib><description>This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-resistance genes and constructed the expression profile of quercetin chemosensitization. The overlapping targets were input into the STRING database and used Cytoscape v3.9.0 to construct the protein–protein interaction (PPI) network. Subsequently, these targets were performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses and molecular docking. Finally, we further detected the potential role of quercetin in improving PTX sensitivity in BC in vitro experiments. Compounds and targets screening hinted that 220 quercetin predicted targets, 244 BC PTX resistance-related genes, and 66 potential sensitive target genes (PSTGs). Network pharmacology screening revealed the top-15 crucial targets in PPI network of quercetin reversing the sensitivity of BC to PTX. KEGG analysis revealed that they were mainly enriched in the EGFR/ERK signaling pathway. Molecular docking showed that both quercetin and PTX could stably bind to the key targets in the EGFR/ERK signaling pathway. In vitro experiments further confirmed that quercetin inhibited the key targets in the EGFR/ERK axis to the suppression of cell proliferation and promotion of apoptosis in PTX-resistance BC cells, and restoring the activity of the resistant cells to PTX. Our results suggested that quercetin increased the sensitivity of BC to PTX through inhibiting EGFR/ERK axis, and it is an effective treatment for reversing PTX resistance.</description><identifier>ISSN: 0028-1298</identifier><identifier>EISSN: 1432-1912</identifier><identifier>DOI: 10.1007/s00210-023-02510-9</identifier><identifier>PMID: 37148401</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Breast cancer ; Cell proliferation ; Chemosensitization ; Epidermal growth factor receptors ; ErbB Receptors ; Gene expression ; Genomes ; Molecular Docking Simulation ; Molecular modelling ; Neoplasms ; Network Pharmacology ; Neurosciences ; Paclitaxel ; Paclitaxel - pharmacology ; Pharmacology ; Pharmacology/Toxicology ; Quercetin ; Quercetin - pharmacology ; Signal transduction</subject><ispartof>Naunyn-Schmiedeberg's archives of pharmacology, 2023-11, Vol.396 (11), p.3045-3059</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-2f329d8565b16a54a3b2063dc4b09044af720f7017f3aeef6326e91dce4a292c3</citedby><cites>FETCH-LOGICAL-c375t-2f329d8565b16a54a3b2063dc4b09044af720f7017f3aeef6326e91dce4a292c3</cites><orcidid>0000-0002-1397-5670 ; 0009-0004-3455-4607 ; 0000-0001-8836-0745 ; 0000-0001-7483-2027 ; 0000-0003-2967-8475 ; 0009-0001-0808-4996 ; 0000-0003-3477-0209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00210-023-02510-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00210-023-02510-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37148401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Yan, Jiaoyan</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Wu, Xiangyi</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Mo, Fei</creatorcontrib><title>Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification</title><title>Naunyn-Schmiedeberg's archives of pharmacology</title><addtitle>Naunyn-Schmiedeberg's Arch Pharmacol</addtitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><description>This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-resistance genes and constructed the expression profile of quercetin chemosensitization. The overlapping targets were input into the STRING database and used Cytoscape v3.9.0 to construct the protein–protein interaction (PPI) network. Subsequently, these targets were performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses and molecular docking. Finally, we further detected the potential role of quercetin in improving PTX sensitivity in BC in vitro experiments. Compounds and targets screening hinted that 220 quercetin predicted targets, 244 BC PTX resistance-related genes, and 66 potential sensitive target genes (PSTGs). Network pharmacology screening revealed the top-15 crucial targets in PPI network of quercetin reversing the sensitivity of BC to PTX. KEGG analysis revealed that they were mainly enriched in the EGFR/ERK signaling pathway. Molecular docking showed that both quercetin and PTX could stably bind to the key targets in the EGFR/ERK signaling pathway. In vitro experiments further confirmed that quercetin inhibited the key targets in the EGFR/ERK axis to the suppression of cell proliferation and promotion of apoptosis in PTX-resistance BC cells, and restoring the activity of the resistant cells to PTX. Our results suggested that quercetin increased the sensitivity of BC to PTX through inhibiting EGFR/ERK axis, and it is an effective treatment for reversing PTX resistance.</description><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Breast cancer</subject><subject>Cell proliferation</subject><subject>Chemosensitization</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Molecular Docking Simulation</subject><subject>Molecular modelling</subject><subject>Neoplasms</subject><subject>Network Pharmacology</subject><subject>Neurosciences</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Quercetin</subject><subject>Quercetin - pharmacology</subject><subject>Signal transduction</subject><issn>0028-1298</issn><issn>1432-1912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUtrFTEUgIMo9rb6B1xIwI2LjuYxT3dS-hAKbnQdzmTOdNJmkjHJtPf6W_pjTXurggshIQfynRcfIW84-8AZaz5GxgRnBRMy3ypH3TOy4aUUBe-4eE42-b8tuOjaA3IY4zVjrOZV9ZIcyIaXbcn4htyfbhfrg3FXNE1IZ9QTOBNn2u_o3WT0RH-sGDQm42jAIqKLJpmfGGkfEGKiGpzGQJOnC2hrEmzRfqIO050PN3SZIMygvfVXu2M6e4t6tRDo4PVN7nlMwQ0UtwsGM6NLYOltDkejIRnvXpEXI9iIr5_eI_L97PTbyUVx-fX8y8nny0LLpkqFGKXohraqq57XUJUge8FqOeiyZx0rSxgbwcaG8WaUgDjWUtTY8UFjCaITWh6R9_u6S_B53ZjUbKJGa8GhX6MSLWedyKfO6Lt_0Gu_Bpeny1RT1bIVnGdK7CkdfIwBR7XkBSHsFGfqwZ3au1PZnXp0p7qc9Pap9NrPOPxJ-S0rA3IPxOVBGIa_vf9T9hfEcKdI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yang, Ye</creator><creator>Yan, Jiaoyan</creator><creator>Huang, Jian</creator><creator>Wu, Xiangyi</creator><creator>Yuan, Yan</creator><creator>Yuan, Yan</creator><creator>Zhang, Shu</creator><creator>Mo, Fei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1397-5670</orcidid><orcidid>https://orcid.org/0009-0004-3455-4607</orcidid><orcidid>https://orcid.org/0000-0001-8836-0745</orcidid><orcidid>https://orcid.org/0000-0001-7483-2027</orcidid><orcidid>https://orcid.org/0000-0003-2967-8475</orcidid><orcidid>https://orcid.org/0009-0001-0808-4996</orcidid><orcidid>https://orcid.org/0000-0003-3477-0209</orcidid></search><sort><creationdate>20231101</creationdate><title>Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification</title><author>Yang, Ye ; Yan, Jiaoyan ; Huang, Jian ; Wu, Xiangyi ; Yuan, Yan ; Yuan, Yan ; Zhang, Shu ; Mo, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-2f329d8565b16a54a3b2063dc4b09044af720f7017f3aeef6326e91dce4a292c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Breast cancer</topic><topic>Cell proliferation</topic><topic>Chemosensitization</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Molecular Docking Simulation</topic><topic>Molecular modelling</topic><topic>Neoplasms</topic><topic>Network Pharmacology</topic><topic>Neurosciences</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Quercetin</topic><topic>Quercetin - pharmacology</topic><topic>Signal transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Yan, Jiaoyan</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Wu, Xiangyi</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Mo, Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ye</au><au>Yan, Jiaoyan</au><au>Huang, Jian</au><au>Wu, Xiangyi</au><au>Yuan, Yan</au><au>Yuan, Yan</au><au>Zhang, Shu</au><au>Mo, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification</atitle><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle><stitle>Naunyn-Schmiedeberg's Arch Pharmacol</stitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><date>2023-11-01</date><risdate>2023</risdate><volume>396</volume><issue>11</issue><spage>3045</spage><epage>3059</epage><pages>3045-3059</pages><issn>0028-1298</issn><eissn>1432-1912</eissn><abstract>This study is aimed to explore the potential molecular mechanism of quercetin reversing paclitaxel (PTX) resistance in breast cancer (BC) by network pharmacology, molecular docking, and experimental verification. Pharmacological platform databases are used to predict quercetin targets and BC PTX-resistance genes and constructed the expression profile of quercetin chemosensitization. The overlapping targets were input into the STRING database and used Cytoscape v3.9.0 to construct the protein–protein interaction (PPI) network. Subsequently, these targets were performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses and molecular docking. Finally, we further detected the potential role of quercetin in improving PTX sensitivity in BC in vitro experiments. Compounds and targets screening hinted that 220 quercetin predicted targets, 244 BC PTX resistance-related genes, and 66 potential sensitive target genes (PSTGs). Network pharmacology screening revealed the top-15 crucial targets in PPI network of quercetin reversing the sensitivity of BC to PTX. KEGG analysis revealed that they were mainly enriched in the EGFR/ERK signaling pathway. Molecular docking showed that both quercetin and PTX could stably bind to the key targets in the EGFR/ERK signaling pathway. In vitro experiments further confirmed that quercetin inhibited the key targets in the EGFR/ERK axis to the suppression of cell proliferation and promotion of apoptosis in PTX-resistance BC cells, and restoring the activity of the resistant cells to PTX. Our results suggested that quercetin increased the sensitivity of BC to PTX through inhibiting EGFR/ERK axis, and it is an effective treatment for reversing PTX resistance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37148401</pmid><doi>10.1007/s00210-023-02510-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1397-5670</orcidid><orcidid>https://orcid.org/0009-0004-3455-4607</orcidid><orcidid>https://orcid.org/0000-0001-8836-0745</orcidid><orcidid>https://orcid.org/0000-0001-7483-2027</orcidid><orcidid>https://orcid.org/0000-0003-2967-8475</orcidid><orcidid>https://orcid.org/0009-0001-0808-4996</orcidid><orcidid>https://orcid.org/0000-0003-3477-0209</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-1298
ispartof Naunyn-Schmiedeberg's archives of pharmacology, 2023-11, Vol.396 (11), p.3045-3059
issn 0028-1298
1432-1912
language eng
recordid cdi_proquest_miscellaneous_2810920926
source MEDLINE; SpringerLink Journals
subjects Apoptosis
Biomedical and Life Sciences
Biomedicine
Breast cancer
Cell proliferation
Chemosensitization
Epidermal growth factor receptors
ErbB Receptors
Gene expression
Genomes
Molecular Docking Simulation
Molecular modelling
Neoplasms
Network Pharmacology
Neurosciences
Paclitaxel
Paclitaxel - pharmacology
Pharmacology
Pharmacology/Toxicology
Quercetin
Quercetin - pharmacology
Signal transduction
title Exploring the mechanism by which quercetin re-sensitizes breast cancer to paclitaxel: network pharmacology, molecular docking, and experimental verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20mechanism%20by%20which%20quercetin%20re-sensitizes%20breast%20cancer%20to%20paclitaxel:%20network%20pharmacology,%20molecular%20docking,%20and%20experimental%20verification&rft.jtitle=Naunyn-Schmiedeberg's%20archives%20of%20pharmacology&rft.au=Yang,%20Ye&rft.date=2023-11-01&rft.volume=396&rft.issue=11&rft.spage=3045&rft.epage=3059&rft.pages=3045-3059&rft.issn=0028-1298&rft.eissn=1432-1912&rft_id=info:doi/10.1007/s00210-023-02510-9&rft_dat=%3Cproquest_cross%3E2875638211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2875638211&rft_id=info:pmid/37148401&rfr_iscdi=true