Cyclic Trinickel(II) Clusters in a Metal‐Azolate Framework for Efficient Overall Water Splitting
Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%...
Gespeichert in:
Veröffentlicht in: | Chemistry, an Asian journal an Asian journal, 2023-08, Vol.18 (15), p.e202300281-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, a stable metal‐azolate framework with cyclic trinickel(II) clusters, namely [Ni3(μ3‐O)(BTPP)(OH)(H2O)2] (Ni‐BTPP, H3BTPP=1,3,5‐tris((1H‐pyrazol‐4‐yl)phenylene)benzene), achieved a current density of 50 mA cm−2 at a cell voltage of 1.8 V in 1.0 M KOH solution, while the current density of 20%Pt/C@NF||IrO2@NF is just 35.8 mA cm−2 at 2.0 V under the same condition. Moreover, no obvious degradation was observed over 12 hours of continuous operation at a large current density of 50 mA cm−2. Theoretical calculations revealed that the μ3‐O atom in the cyclic trinickel(II) cluster serves as hydrogen‐bonding acceptor to facilitate the dissociation of a H2O molecule adsorbed on the adjacent Ni(II) ion, giving a lower energy barrier of H2O dissociation compared with Pt/C; meanwhile, the μ3‐O atom can also participate in the water oxidation reaction to couple with the adjacent *OH adsorbed on Ni(II) ion, providing a low‐energy coupling pathway, thus Ni‐BTPP achieves a high performance for overall water splitting.
A cyclic trinickel(II) cluster‐based metal‐azolate framework is reported as a high‐performance bifunctional catalyst for overall water splitting. |
---|---|
ISSN: | 1861-4728 1861-471X |
DOI: | 10.1002/asia.202300281 |