A Single Reference Interval for Interpreting Serum Free Light Chains across Patients with Varying Renal Function

Abstract Background Serum free light chain (sFLC) assays are interpreted using a sFLC-ratio-based reference interval (manufacturer’s interval) that was defined using a cohort of healthy patients. However, renal impairment elevates the sFLC-ratio, leading to a high false positive rate when using the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical chemistry (Baltimore, Md.) Md.), 2023-06, Vol.69 (6), p.595-605
Hauptverfasser: Azimi, Vahid, Slade, Michael, Fiala, Mark, Fortier, Julie M, Stockerl-Goldstein, Keith, Frater, John L, Brestoff, Jonathan R, Jackups, Ronald, Zaydman, Mark A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Serum free light chain (sFLC) assays are interpreted using a sFLC-ratio-based reference interval (manufacturer’s interval) that was defined using a cohort of healthy patients. However, renal impairment elevates the sFLC-ratio, leading to a high false positive rate when using the manufacturer’s interval. Prior studies have developed renal-specific reference intervals; however, this approach has not been widely adopted due to practical limitations. Thus, there remains a critical need for a renally robust sFLC interpretation method. Methods Retrospective data mining was used to define patient cohorts that reflect the spectrum of renal function seen in clinical practice. Two new reference intervals, one based on the sFLC-ratio and one based on a novel principal component analysis (PCA)-based metric, were developed for the FREELITE assay (Binding Site) on the Roche Cobas c501 instrument (Roche). Results Compared to the manufacturer’s reference interval, both new methods exhibited significantly lower false positive rates and greater robustness to renal function while maintaining equivalent sensitivity for monoclonal gammopathy (MG) diagnosis. While not significantly different, the point estimate for sensitivity was highest for the PCA-based approach. Conclusion Renally robust sFLC interpretation using a single reference interval is possible given a reference cohort that reflects the variation in renal function observed in practice. Further studies are needed to achieve sufficient power and determine if the novel PCA-based metric offers superior sensitivity for MG diagnosis. These new methods offer the practical advantages of not requiring an estimated glomerular filtration rate result or multiple reference intervals, thereby lowering practical barriers to implementation.
ISSN:0009-9147
1530-8561
DOI:10.1093/clinchem/hvad043