Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites

Nanocomposites of poly(∊-caprolactone)/M-HTAB were obtained by polymerization of caprolactone with various amounts (10, 30, 50 and 64 weight ratio) of montmorillonite organophilized with hexadecyltrimethylammonium bromide (HTAB). The microstructure of nanocomposites was studied by small angle X-ray...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2004-01, Vol.12 (8), p.727-737
Hauptverfasser: KIERSNOWSKI, Adam, KOZAK, Maciej, JURGA, Stefan, PIGŁOWSKI, Jacek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 737
container_issue 8
container_start_page 727
container_title Polymers & polymer composites
container_volume 12
creator KIERSNOWSKI, Adam
KOZAK, Maciej
JURGA, Stefan
PIGŁOWSKI, Jacek
description Nanocomposites of poly(∊-caprolactone)/M-HTAB were obtained by polymerization of caprolactone with various amounts (10, 30, 50 and 64 weight ratio) of montmorillonite organophilized with hexadecyltrimethylammonium bromide (HTAB). The microstructure of nanocomposites was studied by small angle X-ray scattering (SAXS). Additionally, the melting enthalpies (ΔH m ), the crystallinities and the half-time of isothermal crystallization were evaluated by differential scanning calorimetry (DSC). As a result of SAXS experiments for the composite PCL/M-HTAB 90/10, in the temperature range from 313 to 283 K, a rapid change in the interlamellar distance from 3.1 nm to 2.72 nm was observed. Similar scattering curves were obtained for the nanocomposite PCL/M-HTAB 70/30. In the composites containing 50% and 64% wt of M-HTAB, the decrease in interlayer distance was less pronounced in the same temperature range (d 001 3.15 – 3.2 nm). DSC results clearly showed that the crystallization is divided into two separate processes: primary crystallization in the PCL matrix, and secondary crystallization.
doi_str_mv 10.1177/096739110401200809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28109014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>794447021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-a04dfd40aaa19482ffa113b29662b1b04bd3adf23d20bcd9e7547ad427d512263</originalsourceid><addsrcrecordid>eNplkM1KxDAUhYMoOI6-gKsiKLqok5umTbuUwT8YcKGuy22SYodMMiapUN_L1_CZ7DADgq4uHL5zOPcQcgr0GkCIGa0KkVUAlFNglJa02iMT4KJM2Sjvk8kGSDfEITkKYUkpg6LIJwSfo-9l7L1O0KpE-iFENKb7xNg5mzT6DT861_vEtcnameHy-yuVuPbOoIzO6quZNDgknY3aSzQYtUosWifdau1CF3U4JgctmqBPdndKXu9uX-YP6eLp_nF-s0hlluUxRcpVqzhFRKh4ydoWAbKGVUXBGmgob1SGqmWZYrSRqtIi5wIVZ0LlwFiRTcnFNncs997rEOtVF6Q2Bq12fahZCbSiwEfw7A-4HB-0Y7caKsF5mYMYIbaFpHcheN3Wa9-t0A810Hozef1_8tF0vkvGMI7RerSyC7_OggPkTGQ_ClmCsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197448517</pqid></control><display><type>article</type><title>Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites</title><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KIERSNOWSKI, Adam ; KOZAK, Maciej ; JURGA, Stefan ; PIGŁOWSKI, Jacek</creator><creatorcontrib>KIERSNOWSKI, Adam ; KOZAK, Maciej ; JURGA, Stefan ; PIGŁOWSKI, Jacek</creatorcontrib><description>Nanocomposites of poly(∊-caprolactone)/M-HTAB were obtained by polymerization of caprolactone with various amounts (10, 30, 50 and 64 weight ratio) of montmorillonite organophilized with hexadecyltrimethylammonium bromide (HTAB). The microstructure of nanocomposites was studied by small angle X-ray scattering (SAXS). Additionally, the melting enthalpies (ΔH m ), the crystallinities and the half-time of isothermal crystallization were evaluated by differential scanning calorimetry (DSC). As a result of SAXS experiments for the composite PCL/M-HTAB 90/10, in the temperature range from 313 to 283 K, a rapid change in the interlamellar distance from 3.1 nm to 2.72 nm was observed. Similar scattering curves were obtained for the nanocomposite PCL/M-HTAB 70/30. In the composites containing 50% and 64% wt of M-HTAB, the decrease in interlayer distance was less pronounced in the same temperature range (d 001 3.15 – 3.2 nm). DSC results clearly showed that the crystallization is divided into two separate processes: primary crystallization in the PCL matrix, and secondary crystallization.</description><identifier>ISSN: 0967-3911</identifier><identifier>EISSN: 1478-2391</identifier><identifier>DOI: 10.1177/096739110401200809</identifier><language>eng</language><publisher>Shrewsbury: Rapra Technology</publisher><subject>Applied sciences ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymers &amp; polymer composites, 2004-01, Vol.12 (8), p.727-737</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright Rapra Technology Limited 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-a04dfd40aaa19482ffa113b29662b1b04bd3adf23d20bcd9e7547ad427d512263</citedby><cites>FETCH-LOGICAL-c335t-a04dfd40aaa19482ffa113b29662b1b04bd3adf23d20bcd9e7547ad427d512263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16411527$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KIERSNOWSKI, Adam</creatorcontrib><creatorcontrib>KOZAK, Maciej</creatorcontrib><creatorcontrib>JURGA, Stefan</creatorcontrib><creatorcontrib>PIGŁOWSKI, Jacek</creatorcontrib><title>Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites</title><title>Polymers &amp; polymer composites</title><description>Nanocomposites of poly(∊-caprolactone)/M-HTAB were obtained by polymerization of caprolactone with various amounts (10, 30, 50 and 64 weight ratio) of montmorillonite organophilized with hexadecyltrimethylammonium bromide (HTAB). The microstructure of nanocomposites was studied by small angle X-ray scattering (SAXS). Additionally, the melting enthalpies (ΔH m ), the crystallinities and the half-time of isothermal crystallization were evaluated by differential scanning calorimetry (DSC). As a result of SAXS experiments for the composite PCL/M-HTAB 90/10, in the temperature range from 313 to 283 K, a rapid change in the interlamellar distance from 3.1 nm to 2.72 nm was observed. Similar scattering curves were obtained for the nanocomposite PCL/M-HTAB 70/30. In the composites containing 50% and 64% wt of M-HTAB, the decrease in interlayer distance was less pronounced in the same temperature range (d 001 3.15 – 3.2 nm). DSC results clearly showed that the crystallization is divided into two separate processes: primary crystallization in the PCL matrix, and secondary crystallization.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0967-3911</issn><issn>1478-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkM1KxDAUhYMoOI6-gKsiKLqok5umTbuUwT8YcKGuy22SYodMMiapUN_L1_CZ7DADgq4uHL5zOPcQcgr0GkCIGa0KkVUAlFNglJa02iMT4KJM2Sjvk8kGSDfEITkKYUkpg6LIJwSfo-9l7L1O0KpE-iFENKb7xNg5mzT6DT861_vEtcnameHy-yuVuPbOoIzO6quZNDgknY3aSzQYtUosWifdau1CF3U4JgctmqBPdndKXu9uX-YP6eLp_nF-s0hlluUxRcpVqzhFRKh4ydoWAbKGVUXBGmgob1SGqmWZYrSRqtIi5wIVZ0LlwFiRTcnFNncs997rEOtVF6Q2Bq12fahZCbSiwEfw7A-4HB-0Y7caKsF5mYMYIbaFpHcheN3Wa9-t0A810Hozef1_8tF0vkvGMI7RerSyC7_OggPkTGQ_ClmCsA</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>KIERSNOWSKI, Adam</creator><creator>KOZAK, Maciej</creator><creator>JURGA, Stefan</creator><creator>PIGŁOWSKI, Jacek</creator><general>Rapra Technology</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20040101</creationdate><title>Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites</title><author>KIERSNOWSKI, Adam ; KOZAK, Maciej ; JURGA, Stefan ; PIGŁOWSKI, Jacek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-a04dfd40aaa19482ffa113b29662b1b04bd3adf23d20bcd9e7547ad427d512263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KIERSNOWSKI, Adam</creatorcontrib><creatorcontrib>KOZAK, Maciej</creatorcontrib><creatorcontrib>JURGA, Stefan</creatorcontrib><creatorcontrib>PIGŁOWSKI, Jacek</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Polymers &amp; polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KIERSNOWSKI, Adam</au><au>KOZAK, Maciej</au><au>JURGA, Stefan</au><au>PIGŁOWSKI, Jacek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites</atitle><jtitle>Polymers &amp; polymer composites</jtitle><date>2004-01-01</date><risdate>2004</risdate><volume>12</volume><issue>8</issue><spage>727</spage><epage>737</epage><pages>727-737</pages><issn>0967-3911</issn><eissn>1478-2391</eissn><abstract>Nanocomposites of poly(∊-caprolactone)/M-HTAB were obtained by polymerization of caprolactone with various amounts (10, 30, 50 and 64 weight ratio) of montmorillonite organophilized with hexadecyltrimethylammonium bromide (HTAB). The microstructure of nanocomposites was studied by small angle X-ray scattering (SAXS). Additionally, the melting enthalpies (ΔH m ), the crystallinities and the half-time of isothermal crystallization were evaluated by differential scanning calorimetry (DSC). As a result of SAXS experiments for the composite PCL/M-HTAB 90/10, in the temperature range from 313 to 283 K, a rapid change in the interlamellar distance from 3.1 nm to 2.72 nm was observed. Similar scattering curves were obtained for the nanocomposite PCL/M-HTAB 70/30. In the composites containing 50% and 64% wt of M-HTAB, the decrease in interlayer distance was less pronounced in the same temperature range (d 001 3.15 – 3.2 nm). DSC results clearly showed that the crystallization is divided into two separate processes: primary crystallization in the PCL matrix, and secondary crystallization.</abstract><cop>Shrewsbury</cop><pub>Rapra Technology</pub><doi>10.1177/096739110401200809</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3911
ispartof Polymers & polymer composites, 2004-01, Vol.12 (8), p.727-737
issn 0967-3911
1478-2391
language eng
recordid cdi_proquest_miscellaneous_28109014
source Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Composites
Exact sciences and technology
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title Structure and crystallization behaviour of poly(ε-caprolactone)/clay intercalated nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20crystallization%20behaviour%20of%20poly(%CE%B5-caprolactone)/clay%20intercalated%20nanocomposites&rft.jtitle=Polymers%20&%20polymer%20composites&rft.au=KIERSNOWSKI,%20Adam&rft.date=2004-01-01&rft.volume=12&rft.issue=8&rft.spage=727&rft.epage=737&rft.pages=727-737&rft.issn=0967-3911&rft.eissn=1478-2391&rft_id=info:doi/10.1177/096739110401200809&rft_dat=%3Cproquest_cross%3E794447021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197448517&rft_id=info:pmid/&rfr_iscdi=true