A branch & bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints

This paper presents a branch and bound (B&B) algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints. The formulation arose in an application to transportation management for allocating funds to highway improvements. Several model properties are developed and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2004-04, Vol.31 (5), p.695-711
Hauptverfasser: Kozanidis, George, Melachrinoudis, Emanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 711
container_issue 5
container_start_page 695
container_title Computers & operations research
container_volume 31
creator Kozanidis, George
Melachrinoudis, Emanuel
description This paper presents a branch and bound (B&B) algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints. The formulation arose in an application to transportation management for allocating funds to highway improvements. Several model properties are developed and utilized to design a B&B solution algorithm. The algorithm solves at each node of the B&B tree a linear relaxation using an adaptation of an existing algorithm for the linear multiple choice knapsack problem. The special relationship between the parent and children subproblems is exploited by the algorithm. This results in high efficiency and low storage space requirements. The worst case complexity of the algorithm is analyzed and computational results that demonstrate its efficiency in the average case are reported. Optimal resource allocation is one of the most widely studied areas in mathematical programming. We introduce a single resource allocation model that considers both discrete and continuous activities. The model is a natural extension of the knapsack problem with both binary and continuous variables. It has application in transportation management for allocating funds to highway improvements. We explore in depth the special structure of the problem and we present important theory that arises from its study. After identifying the fundamental properties of the problem, we present an efficient solution procedure that outperforms existing commercial software packages.
doi_str_mv 10.1016/S0305-0548(03)00021-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28104803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054803000212</els_id><sourcerecordid>28104803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1e5e5f98f89f90a496f685fb2ab6e0bb177a4f2bb301cab2c55d966fca9ccc193</originalsourceid><addsrcrecordid>eNqFkUtr3TAUhEVpoLdpf0JBdBGahdsjy5LlVQghfUCgiyTQnZDko1wltnQr2X38--rmliy66Wo23wxzzhDyhsF7Bkx-uAYOogHRqXfATwGgZU37jGyY6nnTS_HtOdk8IS_Iy1LuKwR9yzZkPqc2m-i29ITatMaRmuku5bBsZ-pTpssWKTSMzuEXjjTEBe8w04dodsW4B7rLyU4405_VQKcQ0WQ6r9MSdhNSt03BVUmxLNlUb3lFjryZCr7-q8fk9uPlzcXn5urrpy8X51eN41IsDUOBwg_Kq8EPYLpBeqmEt62xEsFa1vem8621HJgztnVCjIOU3pnBOccGfkxODrm13_cVy6LnUBxOk4mY1qJbxaBTwCv49h_wPq051m6aDULxTqp9mjhALqdSMnq9y2E2-bdmoPcL6McF9P69Grh-XEC31Xd28GE99UfArIsLGB2OIaNb9JjCfxL-AI5XjiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195834689</pqid></control><display><type>article</type><title>A branch &amp; bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints</title><source>Elsevier ScienceDirect Journals</source><creator>Kozanidis, George ; Melachrinoudis, Emanuel</creator><creatorcontrib>Kozanidis, George ; Melachrinoudis, Emanuel</creatorcontrib><description>This paper presents a branch and bound (B&amp;B) algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints. The formulation arose in an application to transportation management for allocating funds to highway improvements. Several model properties are developed and utilized to design a B&amp;B solution algorithm. The algorithm solves at each node of the B&amp;B tree a linear relaxation using an adaptation of an existing algorithm for the linear multiple choice knapsack problem. The special relationship between the parent and children subproblems is exploited by the algorithm. This results in high efficiency and low storage space requirements. The worst case complexity of the algorithm is analyzed and computational results that demonstrate its efficiency in the average case are reported. Optimal resource allocation is one of the most widely studied areas in mathematical programming. We introduce a single resource allocation model that considers both discrete and continuous activities. The model is a natural extension of the knapsack problem with both binary and continuous variables. It has application in transportation management for allocating funds to highway improvements. We explore in depth the special structure of the problem and we present important theory that arises from its study. After identifying the fundamental properties of the problem, we present an efficient solution procedure that outperforms existing commercial software packages.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/S0305-0548(03)00021-2</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Branch &amp; bound algorithms ; Branch-and-bound algorithm ; Highway construction ; Knapsack problem ; Mathematical models ; Mixed integer knapsack problem ; Multiple choice constraints ; Operations research ; Resource allocation ; Studies</subject><ispartof>Computers &amp; operations research, 2004-04, Vol.31 (5), p.695-711</ispartof><rights>2003 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Apr 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1e5e5f98f89f90a496f685fb2ab6e0bb177a4f2bb301cab2c55d966fca9ccc193</citedby><cites>FETCH-LOGICAL-c365t-1e5e5f98f89f90a496f685fb2ab6e0bb177a4f2bb301cab2c55d966fca9ccc193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054803000212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kozanidis, George</creatorcontrib><creatorcontrib>Melachrinoudis, Emanuel</creatorcontrib><title>A branch &amp; bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints</title><title>Computers &amp; operations research</title><description>This paper presents a branch and bound (B&amp;B) algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints. The formulation arose in an application to transportation management for allocating funds to highway improvements. Several model properties are developed and utilized to design a B&amp;B solution algorithm. The algorithm solves at each node of the B&amp;B tree a linear relaxation using an adaptation of an existing algorithm for the linear multiple choice knapsack problem. The special relationship between the parent and children subproblems is exploited by the algorithm. This results in high efficiency and low storage space requirements. The worst case complexity of the algorithm is analyzed and computational results that demonstrate its efficiency in the average case are reported. Optimal resource allocation is one of the most widely studied areas in mathematical programming. We introduce a single resource allocation model that considers both discrete and continuous activities. The model is a natural extension of the knapsack problem with both binary and continuous variables. It has application in transportation management for allocating funds to highway improvements. We explore in depth the special structure of the problem and we present important theory that arises from its study. After identifying the fundamental properties of the problem, we present an efficient solution procedure that outperforms existing commercial software packages.</description><subject>Algorithms</subject><subject>Branch &amp; bound algorithms</subject><subject>Branch-and-bound algorithm</subject><subject>Highway construction</subject><subject>Knapsack problem</subject><subject>Mathematical models</subject><subject>Mixed integer knapsack problem</subject><subject>Multiple choice constraints</subject><subject>Operations research</subject><subject>Resource allocation</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUtr3TAUhEVpoLdpf0JBdBGahdsjy5LlVQghfUCgiyTQnZDko1wltnQr2X38--rmliy66Wo23wxzzhDyhsF7Bkx-uAYOogHRqXfATwGgZU37jGyY6nnTS_HtOdk8IS_Iy1LuKwR9yzZkPqc2m-i29ITatMaRmuku5bBsZ-pTpssWKTSMzuEXjjTEBe8w04dodsW4B7rLyU4405_VQKcQ0WQ6r9MSdhNSt03BVUmxLNlUb3lFjryZCr7-q8fk9uPlzcXn5urrpy8X51eN41IsDUOBwg_Kq8EPYLpBeqmEt62xEsFa1vem8621HJgztnVCjIOU3pnBOccGfkxODrm13_cVy6LnUBxOk4mY1qJbxaBTwCv49h_wPq051m6aDULxTqp9mjhALqdSMnq9y2E2-bdmoPcL6McF9P69Grh-XEC31Xd28GE99UfArIsLGB2OIaNb9JjCfxL-AI5XjiY</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Kozanidis, George</creator><creator>Melachrinoudis, Emanuel</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope></search><sort><creationdate>20040401</creationdate><title>A branch &amp; bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints</title><author>Kozanidis, George ; Melachrinoudis, Emanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1e5e5f98f89f90a496f685fb2ab6e0bb177a4f2bb301cab2c55d966fca9ccc193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Branch &amp; bound algorithms</topic><topic>Branch-and-bound algorithm</topic><topic>Highway construction</topic><topic>Knapsack problem</topic><topic>Mathematical models</topic><topic>Mixed integer knapsack problem</topic><topic>Multiple choice constraints</topic><topic>Operations research</topic><topic>Resource allocation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozanidis, George</creatorcontrib><creatorcontrib>Melachrinoudis, Emanuel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozanidis, George</au><au>Melachrinoudis, Emanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branch &amp; bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints</atitle><jtitle>Computers &amp; operations research</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>31</volume><issue>5</issue><spage>695</spage><epage>711</epage><pages>695-711</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>This paper presents a branch and bound (B&amp;B) algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints. The formulation arose in an application to transportation management for allocating funds to highway improvements. Several model properties are developed and utilized to design a B&amp;B solution algorithm. The algorithm solves at each node of the B&amp;B tree a linear relaxation using an adaptation of an existing algorithm for the linear multiple choice knapsack problem. The special relationship between the parent and children subproblems is exploited by the algorithm. This results in high efficiency and low storage space requirements. The worst case complexity of the algorithm is analyzed and computational results that demonstrate its efficiency in the average case are reported. Optimal resource allocation is one of the most widely studied areas in mathematical programming. We introduce a single resource allocation model that considers both discrete and continuous activities. The model is a natural extension of the knapsack problem with both binary and continuous variables. It has application in transportation management for allocating funds to highway improvements. We explore in depth the special structure of the problem and we present important theory that arises from its study. After identifying the fundamental properties of the problem, we present an efficient solution procedure that outperforms existing commercial software packages.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0305-0548(03)00021-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2004-04, Vol.31 (5), p.695-711
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_28104803
source Elsevier ScienceDirect Journals
subjects Algorithms
Branch & bound algorithms
Branch-and-bound algorithm
Highway construction
Knapsack problem
Mathematical models
Mixed integer knapsack problem
Multiple choice constraints
Operations research
Resource allocation
Studies
title A branch & bound algorithm for the 0-1 mixed integer knapsack problem with linear multiple choice constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branch%20&%20bound%20algorithm%20for%20the%200-1%20mixed%20integer%20knapsack%20problem%20with%20linear%20multiple%20choice%20constraints&rft.jtitle=Computers%20&%20operations%20research&rft.au=Kozanidis,%20George&rft.date=2004-04-01&rft.volume=31&rft.issue=5&rft.spage=695&rft.epage=711&rft.pages=695-711&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/S0305-0548(03)00021-2&rft_dat=%3Cproquest_cross%3E28104803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195834689&rft_id=info:pmid/&rft_els_id=S0305054803000212&rfr_iscdi=true