Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences

Translation initiation sites (TISs) are important signals in cDNA sequences. Many research efforts have tried to predict TISs in cDNA sequences. In this paper, we propose to use mixture Gaussian models for TIS prediction. Using both local features and some features generated from global measures, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2005-08, Vol.17 (8), p.1152-1160
Hauptverfasser: Li, G., Leong, T.-Y., Zhang, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1160
container_issue 8
container_start_page 1152
container_title IEEE transactions on knowledge and data engineering
container_volume 17
creator Li, G.
Leong, T.-Y.
Zhang, L.
description Translation initiation sites (TISs) are important signals in cDNA sequences. Many research efforts have tried to predict TISs in cDNA sequences. In this paper, we propose to use mixture Gaussian models for TIS prediction. Using both local features and some features generated from global measures, the proposed method predicts TISs with a sensitivity of 98 percent and a specificity of 93.6 percent. Our method outperforms many other existing methods in sensitivity while keeping specificity high. We attribute the improvement in sensitivity to the nature of the global features and the mixture Gaussian models.
doi_str_mv 10.1109/TKDE.2005.133
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28102326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1458707</ieee_id><sourcerecordid>28102326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-504d5e2245f2c959b191e2dd6fb754aeb2cf61030237d06a1e584d1f641c88803</originalsourceid><addsrcrecordid>eNqFkbtPwzAQxiMEEqUwMrFEDDCl-PxInLGipSAqWMqGZLnORXWVR7ETAf89bouExADTPfS7u-_0RdE5kBEAyW8Wj5PpiBIiRsDYQTQAIWRCIYfDkBMOCWc8O45OvF8TQmQmYRC9LpxufKU72zaxbWxn96m3Hfp447CwZtd4t90qru1H1zuMZ7r33uomrtsCKx8G41Vfh9pMnsaxx7ceG4P-NDoqdeXx7DsOo5e76eL2Ppk_zx5ux_PEcMi6RBBeCKSUi5KaXOTLIBlpUaTlMhNc45KaMgXCCGVZQVINKCQvoEw5GCklYcPoer9349pw2neqtt5gVekG294rmaeUpCljgbz6k6R5RnNK5f-ghCCHpgG8_AWu29414V2VAyUZkwABSvaQca33Dku1cbbW7lMBUVvv1NY7tfVOwU7mxZ63iPjDciGzsPELquaUIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912073811</pqid></control><display><type>article</type><title>Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences</title><source>IEEE Electronic Library (IEL)</source><creator>Li, G. ; Leong, T.-Y. ; Zhang, L.</creator><creatorcontrib>Li, G. ; Leong, T.-Y. ; Zhang, L.</creatorcontrib><description>Translation initiation sites (TISs) are important signals in cDNA sequences. Many research efforts have tried to predict TISs in cDNA sequences. In this paper, we propose to use mixture Gaussian models for TIS prediction. Using both local features and some features generated from global measures, the proposed method predicts TISs with a sensitivity of 98 percent and a specificity of 93.6 percent. Our method outperforms many other existing methods in sensitivity while keeping specificity high. We attribute the improvement in sensitivity to the nature of the global features and the mixture Gaussian models.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2005.133</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Biology computing ; classification ; DNA ; Feature extraction ; Humans ; Index Terms- Bioinformatics ; mixture Gaussian model ; Predictive models ; Proteins ; RNA ; Sequences ; Statistical analysis ; translation initiation sites</subject><ispartof>IEEE transactions on knowledge and data engineering, 2005-08, Vol.17 (8), p.1152-1160</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-504d5e2245f2c959b191e2dd6fb754aeb2cf61030237d06a1e584d1f641c88803</citedby><cites>FETCH-LOGICAL-c417t-504d5e2245f2c959b191e2dd6fb754aeb2cf61030237d06a1e584d1f641c88803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1458707$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1458707$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Leong, T.-Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><title>Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Translation initiation sites (TISs) are important signals in cDNA sequences. Many research efforts have tried to predict TISs in cDNA sequences. In this paper, we propose to use mixture Gaussian models for TIS prediction. Using both local features and some features generated from global measures, the proposed method predicts TISs with a sensitivity of 98 percent and a specificity of 93.6 percent. Our method outperforms many other existing methods in sensitivity while keeping specificity high. We attribute the improvement in sensitivity to the nature of the global features and the mixture Gaussian models.</description><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>classification</subject><subject>DNA</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>Index Terms- Bioinformatics</subject><subject>mixture Gaussian model</subject><subject>Predictive models</subject><subject>Proteins</subject><subject>RNA</subject><subject>Sequences</subject><subject>Statistical analysis</subject><subject>translation initiation sites</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkbtPwzAQxiMEEqUwMrFEDDCl-PxInLGipSAqWMqGZLnORXWVR7ETAf89bouExADTPfS7u-_0RdE5kBEAyW8Wj5PpiBIiRsDYQTQAIWRCIYfDkBMOCWc8O45OvF8TQmQmYRC9LpxufKU72zaxbWxn96m3Hfp447CwZtd4t90qru1H1zuMZ7r33uomrtsCKx8G41Vfh9pMnsaxx7ceG4P-NDoqdeXx7DsOo5e76eL2Ppk_zx5ux_PEcMi6RBBeCKSUi5KaXOTLIBlpUaTlMhNc45KaMgXCCGVZQVINKCQvoEw5GCklYcPoer9349pw2neqtt5gVekG294rmaeUpCljgbz6k6R5RnNK5f-ghCCHpgG8_AWu29414V2VAyUZkwABSvaQca33Dku1cbbW7lMBUVvv1NY7tfVOwU7mxZ63iPjDciGzsPELquaUIg</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Li, G.</creator><creator>Leong, T.-Y.</creator><creator>Zhang, L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>7TM</scope></search><sort><creationdate>20050801</creationdate><title>Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences</title><author>Li, G. ; Leong, T.-Y. ; Zhang, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-504d5e2245f2c959b191e2dd6fb754aeb2cf61030237d06a1e584d1f641c88803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>classification</topic><topic>DNA</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>Index Terms- Bioinformatics</topic><topic>mixture Gaussian model</topic><topic>Predictive models</topic><topic>Proteins</topic><topic>RNA</topic><topic>Sequences</topic><topic>Statistical analysis</topic><topic>translation initiation sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, G.</creatorcontrib><creatorcontrib>Leong, T.-Y.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Nucleic Acids Abstracts</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, G.</au><au>Leong, T.-Y.</au><au>Zhang, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>17</volume><issue>8</issue><spage>1152</spage><epage>1160</epage><pages>1152-1160</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Translation initiation sites (TISs) are important signals in cDNA sequences. Many research efforts have tried to predict TISs in cDNA sequences. In this paper, we propose to use mixture Gaussian models for TIS prediction. Using both local features and some features generated from global measures, the proposed method predicts TISs with a sensitivity of 98 percent and a specificity of 93.6 percent. Our method outperforms many other existing methods in sensitivity while keeping specificity high. We attribute the improvement in sensitivity to the nature of the global features and the mixture Gaussian models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2005.133</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2005-08, Vol.17 (8), p.1152-1160
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_28102326
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biology computing
classification
DNA
Feature extraction
Humans
Index Terms- Bioinformatics
mixture Gaussian model
Predictive models
Proteins
RNA
Sequences
Statistical analysis
translation initiation sites
title Translation initiation sites prediction with mixture Gaussian models in human cDNA sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A27%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translation%20initiation%20sites%20prediction%20with%20mixture%20Gaussian%20models%20in%20human%20cDNA%20sequences&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20G.&rft.date=2005-08-01&rft.volume=17&rft.issue=8&rft.spage=1152&rft.epage=1160&rft.pages=1152-1160&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2005.133&rft_dat=%3Cproquest_RIE%3E28102326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912073811&rft_id=info:pmid/&rft_ieee_id=1458707&rfr_iscdi=true