Behavior of solid lubricant nanoparticles under compression

Inorganic fullerene-like materials have been identified as being of potentially utmost importance for many industrial applications. MoS₂ and WS₂ hollow nanoparticles have been identified as strong candidates for tribological applications such as solid lubricants. The main goal of this work was to ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2004-07, Vol.39 (13), p.4119-4129
Hauptverfasser: Leshchinsky, V, Popovitz-Biro, R, Gartsman, K, Rosentsveig, R, Rosenberg, Yu, Tenne, R, Rapoport, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4129
container_issue 13
container_start_page 4119
container_title Journal of materials science
container_volume 39
creator Leshchinsky, V
Popovitz-Biro, R
Gartsman, K
Rosentsveig, R
Rosenberg, Yu
Tenne, R
Rapoport, L
description Inorganic fullerene-like materials have been identified as being of potentially utmost importance for many industrial applications. MoS₂ and WS₂ hollow nanoparticles have been identified as strong candidates for tribological applications such as solid lubricants. The main goal of this work was to evaluate the mechanical properties of solid lubricant particles in ensemble under hydrostatic pressure. The behavior of nanopowders under compression has been described on the basis of constitutive models of continuum mechanics. The model will be applied to an isotropic compaction of copper (well-studied medium), fullerene-like (IF-WS₂) nanoparticles and a natural powder of 2H-WS₂ platelets. The morphology of individual nanoparticles and nanoparticle ensembles will be examined and discussed. Another aspect of this work was to study the applicability and limitations of the proposed constitutive model for the understanding of the tribological behavior of solid lubricant nanoparticles. Compression with the maximal pressure (500 MPa) showed that the shape of the IF nanoparticles is preserved. The dominant mechanism of damage was found to be the delamination or peeling-off of the external sheets of hollow nanoparticles. Strong destruction of 2H-WS₂ platelets was observed under compression.
doi_str_mv 10.1023/B:JMSC.0000033392.89434.87
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28095875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259671617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-23ac4567ac7a1474de92f15d8123233a5151304f269fa07af404e7086fe10f513</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKu_wUXR26753GzqyRY_qXioPYcxm-iW7aYmXcF_b2oLgnOZwzzzzvAgdEZwQTBlV-PR0_NsUuBNMcYULSrFGS8quYcGREiW8wqzfTTAmNKc8pIcoqMYFwkXkpIBuh7bD_hqfMi8y6Jvmzpr-7fQGOjWWQedX0FYN6a1Meu72obM-OUq2Bgb3x2jAwdttCe7PkTzu9vXyUM-fbl_nNxMc8MkX-eUgeGilGAkEC55bRV1RNQVoYwyBoIIwjB3tFQOsATHMbcSV6WzBLs0G6LLbe4q-M_exrVeNtHYtoXO-j5qWmElKikSeP4PXPg-dOk3TalQpSQlkYkabSkTfIzBOr0KzRLCtyZYb6zqsd5Y1X9W9a9VXW2WL3YnIBpoXYDONPEvIV1RHKvEnW45B17De0jMfEYxKVMklUQp9gNTmn_X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259671617</pqid></control><display><type>article</type><title>Behavior of solid lubricant nanoparticles under compression</title><source>SpringerLink Journals</source><creator>Leshchinsky, V ; Popovitz-Biro, R ; Gartsman, K ; Rosentsveig, R ; Rosenberg, Yu ; Tenne, R ; Rapoport, L</creator><creatorcontrib>Leshchinsky, V ; Popovitz-Biro, R ; Gartsman, K ; Rosentsveig, R ; Rosenberg, Yu ; Tenne, R ; Rapoport, L</creatorcontrib><description>Inorganic fullerene-like materials have been identified as being of potentially utmost importance for many industrial applications. MoS₂ and WS₂ hollow nanoparticles have been identified as strong candidates for tribological applications such as solid lubricants. The main goal of this work was to evaluate the mechanical properties of solid lubricant particles in ensemble under hydrostatic pressure. The behavior of nanopowders under compression has been described on the basis of constitutive models of continuum mechanics. The model will be applied to an isotropic compaction of copper (well-studied medium), fullerene-like (IF-WS₂) nanoparticles and a natural powder of 2H-WS₂ platelets. The morphology of individual nanoparticles and nanoparticle ensembles will be examined and discussed. Another aspect of this work was to study the applicability and limitations of the proposed constitutive model for the understanding of the tribological behavior of solid lubricant nanoparticles. Compression with the maximal pressure (500 MPa) showed that the shape of the IF nanoparticles is preserved. The dominant mechanism of damage was found to be the delamination or peeling-off of the external sheets of hollow nanoparticles. Strong destruction of 2H-WS₂ platelets was observed under compression.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/B:JMSC.0000033392.89434.87</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Kluwer Academic Publishers</publisher><subject>Compressive strength ; Condensed matter: structure, mechanical and thermal properties ; Constitutive models ; Continuum mechanics ; copper ; delamination ; Exact sciences and technology ; Hydrostatic pressure ; Industrial applications ; Inorganic fullerenes ; lubricants ; Lubricants &amp; lubrication ; Materials science ; Mathematical models ; Mechanical and acoustical properties of condensed matter ; Mechanical properties ; Mechanical properties of nanoscale materials ; Molybdenum disulfide ; Morphology ; Nanoparticles ; Physics ; Platelets ; Solid lubricants ; Tribology ; Tungsten disulfide</subject><ispartof>Journal of materials science, 2004-07, Vol.39 (13), p.4119-4129</ispartof><rights>2004 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2004). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-23ac4567ac7a1474de92f15d8123233a5151304f269fa07af404e7086fe10f513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15969409$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leshchinsky, V</creatorcontrib><creatorcontrib>Popovitz-Biro, R</creatorcontrib><creatorcontrib>Gartsman, K</creatorcontrib><creatorcontrib>Rosentsveig, R</creatorcontrib><creatorcontrib>Rosenberg, Yu</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rapoport, L</creatorcontrib><title>Behavior of solid lubricant nanoparticles under compression</title><title>Journal of materials science</title><description>Inorganic fullerene-like materials have been identified as being of potentially utmost importance for many industrial applications. MoS₂ and WS₂ hollow nanoparticles have been identified as strong candidates for tribological applications such as solid lubricants. The main goal of this work was to evaluate the mechanical properties of solid lubricant particles in ensemble under hydrostatic pressure. The behavior of nanopowders under compression has been described on the basis of constitutive models of continuum mechanics. The model will be applied to an isotropic compaction of copper (well-studied medium), fullerene-like (IF-WS₂) nanoparticles and a natural powder of 2H-WS₂ platelets. The morphology of individual nanoparticles and nanoparticle ensembles will be examined and discussed. Another aspect of this work was to study the applicability and limitations of the proposed constitutive model for the understanding of the tribological behavior of solid lubricant nanoparticles. Compression with the maximal pressure (500 MPa) showed that the shape of the IF nanoparticles is preserved. The dominant mechanism of damage was found to be the delamination or peeling-off of the external sheets of hollow nanoparticles. Strong destruction of 2H-WS₂ platelets was observed under compression.</description><subject>Compressive strength</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Constitutive models</subject><subject>Continuum mechanics</subject><subject>copper</subject><subject>delamination</subject><subject>Exact sciences and technology</subject><subject>Hydrostatic pressure</subject><subject>Industrial applications</subject><subject>Inorganic fullerenes</subject><subject>lubricants</subject><subject>Lubricants &amp; lubrication</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Molybdenum disulfide</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Physics</subject><subject>Platelets</subject><subject>Solid lubricants</subject><subject>Tribology</subject><subject>Tungsten disulfide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEQhoMoWKu_wUXR26753GzqyRY_qXioPYcxm-iW7aYmXcF_b2oLgnOZwzzzzvAgdEZwQTBlV-PR0_NsUuBNMcYULSrFGS8quYcGREiW8wqzfTTAmNKc8pIcoqMYFwkXkpIBuh7bD_hqfMi8y6Jvmzpr-7fQGOjWWQedX0FYN6a1Meu72obM-OUq2Bgb3x2jAwdttCe7PkTzu9vXyUM-fbl_nNxMc8MkX-eUgeGilGAkEC55bRV1RNQVoYwyBoIIwjB3tFQOsATHMbcSV6WzBLs0G6LLbe4q-M_exrVeNtHYtoXO-j5qWmElKikSeP4PXPg-dOk3TalQpSQlkYkabSkTfIzBOr0KzRLCtyZYb6zqsd5Y1X9W9a9VXW2WL3YnIBpoXYDONPEvIV1RHKvEnW45B17De0jMfEYxKVMklUQp9gNTmn_X</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Leshchinsky, V</creator><creator>Popovitz-Biro, R</creator><creator>Gartsman, K</creator><creator>Rosentsveig, R</creator><creator>Rosenberg, Yu</creator><creator>Tenne, R</creator><creator>Rapoport, L</creator><general>Kluwer Academic Publishers</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20040701</creationdate><title>Behavior of solid lubricant nanoparticles under compression</title><author>Leshchinsky, V ; Popovitz-Biro, R ; Gartsman, K ; Rosentsveig, R ; Rosenberg, Yu ; Tenne, R ; Rapoport, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-23ac4567ac7a1474de92f15d8123233a5151304f269fa07af404e7086fe10f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Compressive strength</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Constitutive models</topic><topic>Continuum mechanics</topic><topic>copper</topic><topic>delamination</topic><topic>Exact sciences and technology</topic><topic>Hydrostatic pressure</topic><topic>Industrial applications</topic><topic>Inorganic fullerenes</topic><topic>lubricants</topic><topic>Lubricants &amp; lubrication</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Molybdenum disulfide</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Physics</topic><topic>Platelets</topic><topic>Solid lubricants</topic><topic>Tribology</topic><topic>Tungsten disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leshchinsky, V</creatorcontrib><creatorcontrib>Popovitz-Biro, R</creatorcontrib><creatorcontrib>Gartsman, K</creatorcontrib><creatorcontrib>Rosentsveig, R</creatorcontrib><creatorcontrib>Rosenberg, Yu</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rapoport, L</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leshchinsky, V</au><au>Popovitz-Biro, R</au><au>Gartsman, K</au><au>Rosentsveig, R</au><au>Rosenberg, Yu</au><au>Tenne, R</au><au>Rapoport, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of solid lubricant nanoparticles under compression</atitle><jtitle>Journal of materials science</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>39</volume><issue>13</issue><spage>4119</spage><epage>4129</epage><pages>4119-4129</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Inorganic fullerene-like materials have been identified as being of potentially utmost importance for many industrial applications. MoS₂ and WS₂ hollow nanoparticles have been identified as strong candidates for tribological applications such as solid lubricants. The main goal of this work was to evaluate the mechanical properties of solid lubricant particles in ensemble under hydrostatic pressure. The behavior of nanopowders under compression has been described on the basis of constitutive models of continuum mechanics. The model will be applied to an isotropic compaction of copper (well-studied medium), fullerene-like (IF-WS₂) nanoparticles and a natural powder of 2H-WS₂ platelets. The morphology of individual nanoparticles and nanoparticle ensembles will be examined and discussed. Another aspect of this work was to study the applicability and limitations of the proposed constitutive model for the understanding of the tribological behavior of solid lubricant nanoparticles. Compression with the maximal pressure (500 MPa) showed that the shape of the IF nanoparticles is preserved. The dominant mechanism of damage was found to be the delamination or peeling-off of the external sheets of hollow nanoparticles. Strong destruction of 2H-WS₂ platelets was observed under compression.</abstract><cop>Heidelberg</cop><pub>Kluwer Academic Publishers</pub><doi>10.1023/B:JMSC.0000033392.89434.87</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2004-07, Vol.39 (13), p.4119-4129
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_28095875
source SpringerLink Journals
subjects Compressive strength
Condensed matter: structure, mechanical and thermal properties
Constitutive models
Continuum mechanics
copper
delamination
Exact sciences and technology
Hydrostatic pressure
Industrial applications
Inorganic fullerenes
lubricants
Lubricants & lubrication
Materials science
Mathematical models
Mechanical and acoustical properties of condensed matter
Mechanical properties
Mechanical properties of nanoscale materials
Molybdenum disulfide
Morphology
Nanoparticles
Physics
Platelets
Solid lubricants
Tribology
Tungsten disulfide
title Behavior of solid lubricant nanoparticles under compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20solid%20lubricant%20nanoparticles%20under%20compression&rft.jtitle=Journal%20of%20materials%20science&rft.au=Leshchinsky,%20V&rft.date=2004-07-01&rft.volume=39&rft.issue=13&rft.spage=4119&rft.epage=4129&rft.pages=4119-4129&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/B:JMSC.0000033392.89434.87&rft_dat=%3Cproquest_cross%3E2259671617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259671617&rft_id=info:pmid/&rfr_iscdi=true