Refractory pulse counting Processes in stochastic neural computers

This letter quantitatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2005-03, Vol.16 (2), p.505-508
Hauptverfasser: McNeill, D.K., Card, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 2
container_start_page 505
container_title IEEE transaction on neural networks and learning systems
container_volume 16
creator McNeill, D.K.
Card, H.C.
description This letter quantitatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.
doi_str_mv 10.1109/TNN.2005.844089
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28095815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1402513</ieee_id><sourcerecordid>28095815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-6826d55f12ad3949c35b00d1710a54be0abbcce6d17eb2b3f77fba96d64b8e0f3</originalsourceid><addsrcrecordid>eNqF0c9L5DAUB_AgLv4-exCkLOit48uvJjmqqLswzC6i55Ckr1rptGPSHvzvNzoDA172lJB83nskX0JOKcwoBXP1tFjMGICcaSFAmx1yQI2gJYDhu3kPQpaGMbVPDlN6A6BCQrVH9qlUWlFpDsjNIzbRhXGIH8Vq6hIWYZj6se1fir9xCJgSpqLtizQO4dWlsQ1Fj1N0XXbL1TRiTMfkR-Ny5clmPSLP93dPt7_K-Z-H37fX8zII4GNZaVbVUjaUuZobYQKXHqCmioKTwiM470PAKp-gZ543SjXemaquhNcIDT8il-u-qzi8T5hGu2xTwK5zPQ5TspWSQmoO_4VMg5Gaygx_foNvwxT7_AhrGHCqzRe6WqMQh5QiNnYV26WLH5aC_QzB5hDsZwh2HUKuON-0nfwS663f_HoGFxvgUnBdDqAPbdq6SirFv0afrV2LiNtrAUxSzv8BumeXtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920318915</pqid></control><display><type>article</type><title>Refractory pulse counting Processes in stochastic neural computers</title><source>IEEE Electronic Library (IEL)</source><creator>McNeill, D.K. ; Card, H.C.</creator><creatorcontrib>McNeill, D.K. ; Card, H.C.</creatorcontrib><description>This letter quantitatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNN.2005.844089</identifier><identifier>PMID: 15787159</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Clocks ; Computer science; control theory; systems ; Connectionism. Neural networks ; Detectors ; Digital signal processing ; Exact sciences and technology ; Neural networks ; Neural Networks (Computer) ; Neural pulse coding ; Optical refraction ; Robots ; Signal processing ; stochastic arithmetic ; Stochastic Processes ; stochastic signal processing ; Stochastic systems ; Very large scale integration</subject><ispartof>IEEE transaction on neural networks and learning systems, 2005-03, Vol.16 (2), p.505-508</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-6826d55f12ad3949c35b00d1710a54be0abbcce6d17eb2b3f77fba96d64b8e0f3</citedby><cites>FETCH-LOGICAL-c403t-6826d55f12ad3949c35b00d1710a54be0abbcce6d17eb2b3f77fba96d64b8e0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1402513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1402513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16577315$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15787159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNeill, D.K.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><title>Refractory pulse counting Processes in stochastic neural computers</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>This letter quantitatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clocks</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Detectors</subject><subject>Digital signal processing</subject><subject>Exact sciences and technology</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Neural pulse coding</subject><subject>Optical refraction</subject><subject>Robots</subject><subject>Signal processing</subject><subject>stochastic arithmetic</subject><subject>Stochastic Processes</subject><subject>stochastic signal processing</subject><subject>Stochastic systems</subject><subject>Very large scale integration</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9L5DAUB_AgLv4-exCkLOit48uvJjmqqLswzC6i55Ckr1rptGPSHvzvNzoDA172lJB83nskX0JOKcwoBXP1tFjMGICcaSFAmx1yQI2gJYDhu3kPQpaGMbVPDlN6A6BCQrVH9qlUWlFpDsjNIzbRhXGIH8Vq6hIWYZj6se1fir9xCJgSpqLtizQO4dWlsQ1Fj1N0XXbL1TRiTMfkR-Ny5clmPSLP93dPt7_K-Z-H37fX8zII4GNZaVbVUjaUuZobYQKXHqCmioKTwiM470PAKp-gZ543SjXemaquhNcIDT8il-u-qzi8T5hGu2xTwK5zPQ5TspWSQmoO_4VMg5Gaygx_foNvwxT7_AhrGHCqzRe6WqMQh5QiNnYV26WLH5aC_QzB5hDsZwh2HUKuON-0nfwS663f_HoGFxvgUnBdDqAPbdq6SirFv0afrV2LiNtrAUxSzv8BumeXtA</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>McNeill, D.K.</creator><creator>Card, H.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20050301</creationdate><title>Refractory pulse counting Processes in stochastic neural computers</title><author>McNeill, D.K. ; Card, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-6826d55f12ad3949c35b00d1710a54be0abbcce6d17eb2b3f77fba96d64b8e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clocks</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Detectors</topic><topic>Digital signal processing</topic><topic>Exact sciences and technology</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Neural pulse coding</topic><topic>Optical refraction</topic><topic>Robots</topic><topic>Signal processing</topic><topic>stochastic arithmetic</topic><topic>Stochastic Processes</topic><topic>stochastic signal processing</topic><topic>Stochastic systems</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>McNeill, D.K.</creatorcontrib><creatorcontrib>Card, H.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McNeill, D.K.</au><au>Card, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refractory pulse counting Processes in stochastic neural computers</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2005-03-01</date><risdate>2005</risdate><volume>16</volume><issue>2</issue><spage>505</spage><epage>508</epage><pages>505-508</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>This letter quantitatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15787159</pmid><doi>10.1109/TNN.2005.844089</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2005-03, Vol.16 (2), p.505-508
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_proquest_miscellaneous_28095815
source IEEE Electronic Library (IEL)
subjects Applied sciences
Artificial intelligence
Clocks
Computer science
control theory
systems
Connectionism. Neural networks
Detectors
Digital signal processing
Exact sciences and technology
Neural networks
Neural Networks (Computer)
Neural pulse coding
Optical refraction
Robots
Signal processing
stochastic arithmetic
Stochastic Processes
stochastic signal processing
Stochastic systems
Very large scale integration
title Refractory pulse counting Processes in stochastic neural computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refractory%20pulse%20counting%20Processes%20in%20stochastic%20neural%20computers&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=McNeill,%20D.K.&rft.date=2005-03-01&rft.volume=16&rft.issue=2&rft.spage=505&rft.epage=508&rft.pages=505-508&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/TNN.2005.844089&rft_dat=%3Cproquest_RIE%3E28095815%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920318915&rft_id=info:pmid/15787159&rft_ieee_id=1402513&rfr_iscdi=true