Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules

Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-05, Vol.15 (19), p.23662-23670
Hauptverfasser: Yang, Sha, Zhao, Zhuyang, Wang, Binpan, Feng, Liu, Luo, Jie, Deng, Ruijia, Sheng, Jing, Gao, Xueping, Xie, Shuang, Chen, Ming, Chang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23670
container_issue 19
container_start_page 23662
container_title ACS applied materials & interfaces
container_volume 15
creator Yang, Sha
Zhao, Zhuyang
Wang, Binpan
Feng, Liu
Luo, Jie
Deng, Ruijia
Sheng, Jing
Gao, Xueping
Xie, Shuang
Chen, Ming
Chang, Kai
description Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large group of diseases. Herein, a modular DNA tetrahedron-based nanomachine was engineered for the ultrasensitive detection of intracellular small molecules. The nanomachine was composed of three self-assembled modules: an aptamer for target recognition, an entropy-driven unit for signal reporting, and a tetrahedral oligonucleotide for the transportation of the cargo (e.g., the nanomachine and fluorescent markers). Adenosine triphosphate (ATP) was used as the molecular model. Once the target ATP bonded with the aptamer module, an initiator was released from the aptamer module to activate the entropy-driven module, ultimately activating the ATP-responsive signal output and subsequent signal amplification. The performance of the nanomachine was validated by delivering it to living cells with the aid of the tetrahedral module to demonstrate the possibility of executing intracellular ATP imaging. This innovative nanomachine displays a linear response to ATP in the 1 pM to 10 nM concentration range and demonstrates high sensitivity with a low detection limit of 0.40 pM. Remarkably, our nanomachine successfully executes endogenous ATP imaging and is able to distinguish tumor cells from normal ones based on the ATP level. Overall, the proposed strategy opens up a promising avenue for bioactive small molecule-based detection/diagnostic assays.
doi_str_mv 10.1021/acsami.3c02614
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809545133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809545133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-4524faba1b7eb301a4adfb8974df85f0bc0e423ab05f202ac53f81531add292b3</originalsourceid><addsrcrecordid>eNp1kDlPxDAQhS0E4m4pkUuElMXnbrbkBomFAqijiTMGI8cGO0Gi5ZeTPaCjmpHme29mHiEHnI04E_wETIbWjaRhYszVGtnmU6WKUmix_tcrtUV2cn5jbCwF05tkS064YlqOt8n3LDa9h0Qvw4sLiMmFFxotBXpxf0qfsEvwik2KoTiDjA29hxBbMK8DS21M9NkPRMaQXec-kV5gh6ZzMcw9bsMwM-j9YsGZi2AW0GML3tNZ9Gh6j3mPbFjwGfdXdZc8X10-nd8Udw_Xt-endwVIybpCaaEs1MDrCdaScVDQ2LqcTlRjS21ZbRgqIaFm2gomwGhpS64lh6YRU1HLXXK09H1P8aPH3FWty_PzIGDscyVKNtVKcykHdLRETYo5J7TVe3ItpK-Ks2qee7XMvVrlPggOV9593WLzh_8GPQDHS2AQVm-xT2F49T-3H_vPj3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809545133</pqid></control><display><type>article</type><title>Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yang, Sha ; Zhao, Zhuyang ; Wang, Binpan ; Feng, Liu ; Luo, Jie ; Deng, Ruijia ; Sheng, Jing ; Gao, Xueping ; Xie, Shuang ; Chen, Ming ; Chang, Kai</creator><creatorcontrib>Yang, Sha ; Zhao, Zhuyang ; Wang, Binpan ; Feng, Liu ; Luo, Jie ; Deng, Ruijia ; Sheng, Jing ; Gao, Xueping ; Xie, Shuang ; Chen, Ming ; Chang, Kai</creatorcontrib><description>Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large group of diseases. Herein, a modular DNA tetrahedron-based nanomachine was engineered for the ultrasensitive detection of intracellular small molecules. The nanomachine was composed of three self-assembled modules: an aptamer for target recognition, an entropy-driven unit for signal reporting, and a tetrahedral oligonucleotide for the transportation of the cargo (e.g., the nanomachine and fluorescent markers). Adenosine triphosphate (ATP) was used as the molecular model. Once the target ATP bonded with the aptamer module, an initiator was released from the aptamer module to activate the entropy-driven module, ultimately activating the ATP-responsive signal output and subsequent signal amplification. The performance of the nanomachine was validated by delivering it to living cells with the aid of the tetrahedral module to demonstrate the possibility of executing intracellular ATP imaging. This innovative nanomachine displays a linear response to ATP in the 1 pM to 10 nM concentration range and demonstrates high sensitivity with a low detection limit of 0.40 pM. Remarkably, our nanomachine successfully executes endogenous ATP imaging and is able to distinguish tumor cells from normal ones based on the ATP level. Overall, the proposed strategy opens up a promising avenue for bioactive small molecule-based detection/diagnostic assays.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02614</identifier><identifier>PMID: 37140536</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphate ; Biosensing Techniques - methods ; DNA ; Functional Nanostructured Materials (including low-D carbon) ; Limit of Detection ; Oligonucleotides</subject><ispartof>ACS applied materials &amp; interfaces, 2023-05, Vol.15 (19), p.23662-23670</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-4524faba1b7eb301a4adfb8974df85f0bc0e423ab05f202ac53f81531add292b3</citedby><cites>FETCH-LOGICAL-a330t-4524faba1b7eb301a4adfb8974df85f0bc0e423ab05f202ac53f81531add292b3</cites><orcidid>0000-0003-0613-7932 ; 0000-0001-7587-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c02614$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c02614$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37140536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Sha</creatorcontrib><creatorcontrib>Zhao, Zhuyang</creatorcontrib><creatorcontrib>Wang, Binpan</creatorcontrib><creatorcontrib>Feng, Liu</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Deng, Ruijia</creatorcontrib><creatorcontrib>Sheng, Jing</creatorcontrib><creatorcontrib>Gao, Xueping</creatorcontrib><creatorcontrib>Xie, Shuang</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Chang, Kai</creatorcontrib><title>Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large group of diseases. Herein, a modular DNA tetrahedron-based nanomachine was engineered for the ultrasensitive detection of intracellular small molecules. The nanomachine was composed of three self-assembled modules: an aptamer for target recognition, an entropy-driven unit for signal reporting, and a tetrahedral oligonucleotide for the transportation of the cargo (e.g., the nanomachine and fluorescent markers). Adenosine triphosphate (ATP) was used as the molecular model. Once the target ATP bonded with the aptamer module, an initiator was released from the aptamer module to activate the entropy-driven module, ultimately activating the ATP-responsive signal output and subsequent signal amplification. The performance of the nanomachine was validated by delivering it to living cells with the aid of the tetrahedral module to demonstrate the possibility of executing intracellular ATP imaging. This innovative nanomachine displays a linear response to ATP in the 1 pM to 10 nM concentration range and demonstrates high sensitivity with a low detection limit of 0.40 pM. Remarkably, our nanomachine successfully executes endogenous ATP imaging and is able to distinguish tumor cells from normal ones based on the ATP level. Overall, the proposed strategy opens up a promising avenue for bioactive small molecule-based detection/diagnostic assays.</description><subject>Adenosine Triphosphate</subject><subject>Biosensing Techniques - methods</subject><subject>DNA</subject><subject>Functional Nanostructured Materials (including low-D carbon)</subject><subject>Limit of Detection</subject><subject>Oligonucleotides</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDlPxDAQhS0E4m4pkUuElMXnbrbkBomFAqijiTMGI8cGO0Gi5ZeTPaCjmpHme29mHiEHnI04E_wETIbWjaRhYszVGtnmU6WKUmix_tcrtUV2cn5jbCwF05tkS064YlqOt8n3LDa9h0Qvw4sLiMmFFxotBXpxf0qfsEvwik2KoTiDjA29hxBbMK8DS21M9NkPRMaQXec-kV5gh6ZzMcw9bsMwM-j9YsGZi2AW0GML3tNZ9Gh6j3mPbFjwGfdXdZc8X10-nd8Udw_Xt-endwVIybpCaaEs1MDrCdaScVDQ2LqcTlRjS21ZbRgqIaFm2gomwGhpS64lh6YRU1HLXXK09H1P8aPH3FWty_PzIGDscyVKNtVKcykHdLRETYo5J7TVe3ItpK-Ks2qee7XMvVrlPggOV9593WLzh_8GPQDHS2AQVm-xT2F49T-3H_vPj3A</recordid><startdate>20230517</startdate><enddate>20230517</enddate><creator>Yang, Sha</creator><creator>Zhao, Zhuyang</creator><creator>Wang, Binpan</creator><creator>Feng, Liu</creator><creator>Luo, Jie</creator><creator>Deng, Ruijia</creator><creator>Sheng, Jing</creator><creator>Gao, Xueping</creator><creator>Xie, Shuang</creator><creator>Chen, Ming</creator><creator>Chang, Kai</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0613-7932</orcidid><orcidid>https://orcid.org/0000-0001-7587-3066</orcidid></search><sort><creationdate>20230517</creationdate><title>Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules</title><author>Yang, Sha ; Zhao, Zhuyang ; Wang, Binpan ; Feng, Liu ; Luo, Jie ; Deng, Ruijia ; Sheng, Jing ; Gao, Xueping ; Xie, Shuang ; Chen, Ming ; Chang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-4524faba1b7eb301a4adfb8974df85f0bc0e423ab05f202ac53f81531add292b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenosine Triphosphate</topic><topic>Biosensing Techniques - methods</topic><topic>DNA</topic><topic>Functional Nanostructured Materials (including low-D carbon)</topic><topic>Limit of Detection</topic><topic>Oligonucleotides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Sha</creatorcontrib><creatorcontrib>Zhao, Zhuyang</creatorcontrib><creatorcontrib>Wang, Binpan</creatorcontrib><creatorcontrib>Feng, Liu</creatorcontrib><creatorcontrib>Luo, Jie</creatorcontrib><creatorcontrib>Deng, Ruijia</creatorcontrib><creatorcontrib>Sheng, Jing</creatorcontrib><creatorcontrib>Gao, Xueping</creatorcontrib><creatorcontrib>Xie, Shuang</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Chang, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Sha</au><au>Zhao, Zhuyang</au><au>Wang, Binpan</au><au>Feng, Liu</au><au>Luo, Jie</au><au>Deng, Ruijia</au><au>Sheng, Jing</au><au>Gao, Xueping</au><au>Xie, Shuang</au><au>Chen, Ming</au><au>Chang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-05-17</date><risdate>2023</risdate><volume>15</volume><issue>19</issue><spage>23662</spage><epage>23670</epage><pages>23662-23670</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Bioactive small molecules serve as invaluable biomarkers for recognizing modulated organismal metabolism in correlation with numerous diseases. Therefore, sensitive and specific molecular biosensing and imaging in vitro and in vivo are particularly critical for the diagnosis and treatment of a large group of diseases. Herein, a modular DNA tetrahedron-based nanomachine was engineered for the ultrasensitive detection of intracellular small molecules. The nanomachine was composed of three self-assembled modules: an aptamer for target recognition, an entropy-driven unit for signal reporting, and a tetrahedral oligonucleotide for the transportation of the cargo (e.g., the nanomachine and fluorescent markers). Adenosine triphosphate (ATP) was used as the molecular model. Once the target ATP bonded with the aptamer module, an initiator was released from the aptamer module to activate the entropy-driven module, ultimately activating the ATP-responsive signal output and subsequent signal amplification. The performance of the nanomachine was validated by delivering it to living cells with the aid of the tetrahedral module to demonstrate the possibility of executing intracellular ATP imaging. This innovative nanomachine displays a linear response to ATP in the 1 pM to 10 nM concentration range and demonstrates high sensitivity with a low detection limit of 0.40 pM. Remarkably, our nanomachine successfully executes endogenous ATP imaging and is able to distinguish tumor cells from normal ones based on the ATP level. Overall, the proposed strategy opens up a promising avenue for bioactive small molecule-based detection/diagnostic assays.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37140536</pmid><doi>10.1021/acsami.3c02614</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0613-7932</orcidid><orcidid>https://orcid.org/0000-0001-7587-3066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-05, Vol.15 (19), p.23662-23670
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2809545133
source MEDLINE; American Chemical Society Journals
subjects Adenosine Triphosphate
Biosensing Techniques - methods
DNA
Functional Nanostructured Materials (including low-D carbon)
Limit of Detection
Oligonucleotides
title Modular Engineering of a DNA Tetrahedron-Based Nanomachine for Ultrasensitive Detection of Intracellular Bioactive Small Molecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20Engineering%20of%20a%20DNA%20Tetrahedron-Based%20Nanomachine%20for%20Ultrasensitive%20Detection%20of%20Intracellular%20Bioactive%20Small%20Molecules&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Sha&rft.date=2023-05-17&rft.volume=15&rft.issue=19&rft.spage=23662&rft.epage=23670&rft.pages=23662-23670&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02614&rft_dat=%3Cproquest_cross%3E2809545133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809545133&rft_id=info:pmid/37140536&rfr_iscdi=true