Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes
The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2024, Vol.196 (1), p.457-477 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 1 |
container_start_page | 457 |
container_title | Applied biochemistry and biotechnology |
container_volume | 196 |
creator | Trevisan, Ana Paula Lied, Eduardo Borges Fuess, Lucas Tadeu Zaiat, Marcelo de Souza, Willyan Goergen Gomes, Simone Damasceno Gomes, Benedito Martins |
description | The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment. The CMTR was monitored in 4 assays at 25ºC using sucrose-based synthetic effluent. The hydraulic retention time (HRT) was fixed at 2 h, while the COD varied between 2–8 g L
−1
to obtain organic loading rates in the 24 – 96 g COD L
−1
d
−1
. Long-term (90 d) BHP was successfully attained in all conditions due to the improved biomass retention capacity. Optimal values for the SOLR (4.9 g COD g
−1
VSS d
−1
) were observed when applying up to 48 g COD L
−1
d
−1
, in which BHP was maximized. These patterns indicate a favorable balance between biomass retention and washout was naturally achieved. The CMTR looks promising for continuous BHP and is exempt from additional biomass discharge strategies. |
doi_str_mv | 10.1007/s12010-023-04553-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809544259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809544259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-78c4097210271b5bee41d9a97af5af67930fbf56a9912ebc5aa346773098ae873</originalsourceid><addsrcrecordid>eNp9kUtP3DAUhS1UBFPKH2CBLHXTTYofcRx3R4fXSFRFFV1bTrgZTBN7sJ1B_Ib-6XoaHhILVpbu-e6xjw9CB5R8pYTIo0gZoaQgjBekFIIXfAvNqBAqjxT9gGaESV4wVqtd9DHGO0Ioq4XcQbtc0pLIms_Q38WwCn5t3RKnW8Bz75J1ox8j_jH2ya56wNdjA_gXmDb58A0bhxfO-bVJdg34u_VhUjarnV2OIQve4QebbvF51hK-8gmyq-lxl7ETE_7gMwhDnk3oVfAtxAjxE9ruTB9h_-ncQ7_PTq_nF8Xlz_PF_PiyaDmrUiHrtiRKMprj0UY0ACW9UUZJ0wnTVVJx0jWdqIxSlEHTCmN4WUnJiaoN1JLvoS-Tb05-P0JMerCxhb43DnJyzWqiRFkyoTL6-Q1658fg8ut0_mJRU16xjSGbqDb4GAN0ehXsYMKjpkRvqtJTVTpXpf9XpXleOnyyHpsBbl5WnrvJAJ-AmCW3hPB69zu2_wD1eqAx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915813627</pqid></control><display><type>article</type><title>Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes</title><source>SpringerLink Journals</source><creator>Trevisan, Ana Paula ; Lied, Eduardo Borges ; Fuess, Lucas Tadeu ; Zaiat, Marcelo ; de Souza, Willyan Goergen ; Gomes, Simone Damasceno ; Gomes, Benedito Martins</creator><creatorcontrib>Trevisan, Ana Paula ; Lied, Eduardo Borges ; Fuess, Lucas Tadeu ; Zaiat, Marcelo ; de Souza, Willyan Goergen ; Gomes, Simone Damasceno ; Gomes, Benedito Martins</creatorcontrib><description>The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment. The CMTR was monitored in 4 assays at 25ºC using sucrose-based synthetic effluent. The hydraulic retention time (HRT) was fixed at 2 h, while the COD varied between 2–8 g L
−1
to obtain organic loading rates in the 24 – 96 g COD L
−1
d
−1
. Long-term (90 d) BHP was successfully attained in all conditions due to the improved biomass retention capacity. Optimal values for the SOLR (4.9 g COD g
−1
VSS d
−1
) were observed when applying up to 48 g COD L
−1
d
−1
, in which BHP was maximized. These patterns indicate a favorable balance between biomass retention and washout was naturally achieved. The CMTR looks promising for continuous BHP and is exempt from additional biomass discharge strategies.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-023-04553-3</identifier><identifier>PMID: 37140783</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biohydrogen ; Biomass ; Bioreactors ; Biotechnology ; Cell adhesion ; Chemistry ; Chemistry and Materials Science ; Fermentation ; Grooves ; Hydraulic retention time ; Loading rate ; Organic loading ; Original Article ; Reactors ; Retention ; Retention capacity ; Retention time ; Sucrose ; Tubes</subject><ispartof>Applied biochemistry and biotechnology, 2024, Vol.196 (1), p.457-477</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-78c4097210271b5bee41d9a97af5af67930fbf56a9912ebc5aa346773098ae873</cites><orcidid>0000-0003-0223-4049 ; 0000-0002-7424-4505 ; 0000-0001-7639-8500 ; 0000-0002-4680-5248 ; 0000-0001-7336-9093 ; 0000-0001-8520-1124 ; 0000-0002-5499-4595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-023-04553-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-023-04553-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37140783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trevisan, Ana Paula</creatorcontrib><creatorcontrib>Lied, Eduardo Borges</creatorcontrib><creatorcontrib>Fuess, Lucas Tadeu</creatorcontrib><creatorcontrib>Zaiat, Marcelo</creatorcontrib><creatorcontrib>de Souza, Willyan Goergen</creatorcontrib><creatorcontrib>Gomes, Simone Damasceno</creatorcontrib><creatorcontrib>Gomes, Benedito Martins</creatorcontrib><title>Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment. The CMTR was monitored in 4 assays at 25ºC using sucrose-based synthetic effluent. The hydraulic retention time (HRT) was fixed at 2 h, while the COD varied between 2–8 g L
−1
to obtain organic loading rates in the 24 – 96 g COD L
−1
d
−1
. Long-term (90 d) BHP was successfully attained in all conditions due to the improved biomass retention capacity. Optimal values for the SOLR (4.9 g COD g
−1
VSS d
−1
) were observed when applying up to 48 g COD L
−1
d
−1
, in which BHP was maximized. These patterns indicate a favorable balance between biomass retention and washout was naturally achieved. The CMTR looks promising for continuous BHP and is exempt from additional biomass discharge strategies.</description><subject>Biochemistry</subject><subject>Biohydrogen</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cell adhesion</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fermentation</subject><subject>Grooves</subject><subject>Hydraulic retention time</subject><subject>Loading rate</subject><subject>Organic loading</subject><subject>Original Article</subject><subject>Reactors</subject><subject>Retention</subject><subject>Retention capacity</subject><subject>Retention time</subject><subject>Sucrose</subject><subject>Tubes</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAUhS1UBFPKH2CBLHXTTYofcRx3R4fXSFRFFV1bTrgZTBN7sJ1B_Ib-6XoaHhILVpbu-e6xjw9CB5R8pYTIo0gZoaQgjBekFIIXfAvNqBAqjxT9gGaESV4wVqtd9DHGO0Ioq4XcQbtc0pLIms_Q38WwCn5t3RKnW8Bz75J1ox8j_jH2ya56wNdjA_gXmDb58A0bhxfO-bVJdg34u_VhUjarnV2OIQve4QebbvF51hK-8gmyq-lxl7ETE_7gMwhDnk3oVfAtxAjxE9ruTB9h_-ncQ7_PTq_nF8Xlz_PF_PiyaDmrUiHrtiRKMprj0UY0ACW9UUZJ0wnTVVJx0jWdqIxSlEHTCmN4WUnJiaoN1JLvoS-Tb05-P0JMerCxhb43DnJyzWqiRFkyoTL6-Q1658fg8ut0_mJRU16xjSGbqDb4GAN0ehXsYMKjpkRvqtJTVTpXpf9XpXleOnyyHpsBbl5WnrvJAJ-AmCW3hPB69zu2_wD1eqAx</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Trevisan, Ana Paula</creator><creator>Lied, Eduardo Borges</creator><creator>Fuess, Lucas Tadeu</creator><creator>Zaiat, Marcelo</creator><creator>de Souza, Willyan Goergen</creator><creator>Gomes, Simone Damasceno</creator><creator>Gomes, Benedito Martins</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0223-4049</orcidid><orcidid>https://orcid.org/0000-0002-7424-4505</orcidid><orcidid>https://orcid.org/0000-0001-7639-8500</orcidid><orcidid>https://orcid.org/0000-0002-4680-5248</orcidid><orcidid>https://orcid.org/0000-0001-7336-9093</orcidid><orcidid>https://orcid.org/0000-0001-8520-1124</orcidid><orcidid>https://orcid.org/0000-0002-5499-4595</orcidid></search><sort><creationdate>2024</creationdate><title>Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes</title><author>Trevisan, Ana Paula ; Lied, Eduardo Borges ; Fuess, Lucas Tadeu ; Zaiat, Marcelo ; de Souza, Willyan Goergen ; Gomes, Simone Damasceno ; Gomes, Benedito Martins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-78c4097210271b5bee41d9a97af5af67930fbf56a9912ebc5aa346773098ae873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biohydrogen</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cell adhesion</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fermentation</topic><topic>Grooves</topic><topic>Hydraulic retention time</topic><topic>Loading rate</topic><topic>Organic loading</topic><topic>Original Article</topic><topic>Reactors</topic><topic>Retention</topic><topic>Retention capacity</topic><topic>Retention time</topic><topic>Sucrose</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trevisan, Ana Paula</creatorcontrib><creatorcontrib>Lied, Eduardo Borges</creatorcontrib><creatorcontrib>Fuess, Lucas Tadeu</creatorcontrib><creatorcontrib>Zaiat, Marcelo</creatorcontrib><creatorcontrib>de Souza, Willyan Goergen</creatorcontrib><creatorcontrib>Gomes, Simone Damasceno</creatorcontrib><creatorcontrib>Gomes, Benedito Martins</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trevisan, Ana Paula</au><au>Lied, Eduardo Borges</au><au>Fuess, Lucas Tadeu</au><au>Zaiat, Marcelo</au><au>de Souza, Willyan Goergen</au><au>Gomes, Simone Damasceno</au><au>Gomes, Benedito Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2024</date><risdate>2024</risdate><volume>196</volume><issue>1</issue><spage>457</spage><epage>477</epage><pages>457-477</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The continuous multiple tube reactor (CMTR) has been developed as a promising technology to maximize biohydrogen production (BHP) by dark fermentation (DF) by preventing excess biomass accumulation, leading to suboptimum values of specific organic loading rates (SOLR). However, previous experiences failed to achieve stable and continuous BHP in this reactor, as the low biomass retention capacity in the tube region limited controlling the SOLR. This study goes beyond the evaluation of the CMTR for DF by inserting grooves in the inner wall of the tubes to ensure better cell attachment. The CMTR was monitored in 4 assays at 25ºC using sucrose-based synthetic effluent. The hydraulic retention time (HRT) was fixed at 2 h, while the COD varied between 2–8 g L
−1
to obtain organic loading rates in the 24 – 96 g COD L
−1
d
−1
. Long-term (90 d) BHP was successfully attained in all conditions due to the improved biomass retention capacity. Optimal values for the SOLR (4.9 g COD g
−1
VSS d
−1
) were observed when applying up to 48 g COD L
−1
d
−1
, in which BHP was maximized. These patterns indicate a favorable balance between biomass retention and washout was naturally achieved. The CMTR looks promising for continuous BHP and is exempt from additional biomass discharge strategies.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>37140783</pmid><doi>10.1007/s12010-023-04553-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0223-4049</orcidid><orcidid>https://orcid.org/0000-0002-7424-4505</orcidid><orcidid>https://orcid.org/0000-0001-7639-8500</orcidid><orcidid>https://orcid.org/0000-0002-4680-5248</orcidid><orcidid>https://orcid.org/0000-0001-7336-9093</orcidid><orcidid>https://orcid.org/0000-0001-8520-1124</orcidid><orcidid>https://orcid.org/0000-0002-5499-4595</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2024, Vol.196 (1), p.457-477 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_2809544259 |
source | SpringerLink Journals |
subjects | Biochemistry Biohydrogen Biomass Bioreactors Biotechnology Cell adhesion Chemistry Chemistry and Materials Science Fermentation Grooves Hydraulic retention time Loading rate Organic loading Original Article Reactors Retention Retention capacity Retention time Sucrose Tubes |
title | Improving the Continuous Multiple Tube Reactor: an Innovative Bioreactor Configuration with Great Potential for Dark Fermentation Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Continuous%20Multiple%20Tube%20Reactor:%20an%20Innovative%20Bioreactor%20Configuration%20with%20Great%20Potential%20for%20Dark%20Fermentation%20Processes&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Trevisan,%20Ana%20Paula&rft.date=2024&rft.volume=196&rft.issue=1&rft.spage=457&rft.epage=477&rft.pages=457-477&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-023-04553-3&rft_dat=%3Cproquest_cross%3E2809544259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915813627&rft_id=info:pmid/37140783&rfr_iscdi=true |