What could we make of AI in plastic surgery education

To explore the possibilities of artificial intelligence (AI) text-to-picture system, DALL·E 2 was used to generated clinical photographs for medical and plastic surgery education. Generic English text was used to guide AI in three categories: subcutaneous tumor, wound and skin tumor. The most clinic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plastic, reconstructive & aesthetic surgery reconstructive & aesthetic surgery, 2023-06, Vol.81, p.94-96
1. Verfasser: Koljonen, Virve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue
container_start_page 94
container_title Journal of plastic, reconstructive & aesthetic surgery
container_volume 81
creator Koljonen, Virve
description To explore the possibilities of artificial intelligence (AI) text-to-picture system, DALL·E 2 was used to generated clinical photographs for medical and plastic surgery education. Generic English text was used to guide AI in three categories: subcutaneous tumor, wound and skin tumor. The most clinically accurate images were chosen for the article or for further editing. AI-generated images with variating clinical accuracy in different categories. The most accurate images were the soft-tissue tumors and the least accurate wounds. This study showed that AI text-to-picture system might be worthy tool for medical education.
doi_str_mv 10.1016/j.bjps.2023.04.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809543308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S174868152300205X</els_id><sourcerecordid>2809543308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-731443cd55fdb15612adb8ad8872e73ca75a21c2fc1ad97110445f2fe18337533</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAfJ0cuu-WxS8FKKH4WCF8VjyCazmnW7W5Ndpf_eLa0ehYGZwzPvMA9Cl5TklNDpTZUX1SbljDCeE5ETKY_QmGqlMyL57HiYldDZVFM5QmcpVYQIToU8RSOu6FAzMUby9d122LV97fE34LX9ANyWeL7EocGb2qYuOJz6-AZxi8H3znahbc7RSWnrBBeHPkEv93fPi8ds9fSwXMxXmROEdJkazgnuvJSlL6icUmZ9oa3XWjFQ3FklLaOOlY5aP1OUEiFkyUqgmnMlOZ-g633uJrafPaTOrENyUNe2gbZPhmkyk4JzogeU7VEX25QilGYTw9rGraHE7HSZyux0mZ0uQ4QZdA1LV4f8vliD_1v59TMAt3sAhi-_AkSTXIDGgQ8RXGd8G_7L_wFj_3l_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809543308</pqid></control><display><type>article</type><title>What could we make of AI in plastic surgery education</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Koljonen, Virve</creator><creatorcontrib>Koljonen, Virve</creatorcontrib><description>To explore the possibilities of artificial intelligence (AI) text-to-picture system, DALL·E 2 was used to generated clinical photographs for medical and plastic surgery education. Generic English text was used to guide AI in three categories: subcutaneous tumor, wound and skin tumor. The most clinically accurate images were chosen for the article or for further editing. AI-generated images with variating clinical accuracy in different categories. The most accurate images were the soft-tissue tumors and the least accurate wounds. This study showed that AI text-to-picture system might be worthy tool for medical education.</description><identifier>ISSN: 1748-6815</identifier><identifier>EISSN: 1878-0539</identifier><identifier>DOI: 10.1016/j.bjps.2023.04.055</identifier><identifier>PMID: 37137194</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial Intelligence ; Dalle2 ; Humans ; Medical education ; Plastic surgery education ; Plastic Surgery Procedures ; Skin Neoplasms ; Soft Tissue Neoplasms ; Surgery, Plastic ; Text- to-picture</subject><ispartof>Journal of plastic, reconstructive &amp; aesthetic surgery, 2023-06, Vol.81, p.94-96</ispartof><rights>2023 British Association of Plastic, Reconstructive and Aesthetic Surgeons</rights><rights>Copyright © 2023 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-731443cd55fdb15612adb8ad8872e73ca75a21c2fc1ad97110445f2fe18337533</citedby><cites>FETCH-LOGICAL-c400t-731443cd55fdb15612adb8ad8872e73ca75a21c2fc1ad97110445f2fe18337533</cites><orcidid>0000-0003-0398-4829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bjps.2023.04.055$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37137194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koljonen, Virve</creatorcontrib><title>What could we make of AI in plastic surgery education</title><title>Journal of plastic, reconstructive &amp; aesthetic surgery</title><addtitle>J Plast Reconstr Aesthet Surg</addtitle><description>To explore the possibilities of artificial intelligence (AI) text-to-picture system, DALL·E 2 was used to generated clinical photographs for medical and plastic surgery education. Generic English text was used to guide AI in three categories: subcutaneous tumor, wound and skin tumor. The most clinically accurate images were chosen for the article or for further editing. AI-generated images with variating clinical accuracy in different categories. The most accurate images were the soft-tissue tumors and the least accurate wounds. This study showed that AI text-to-picture system might be worthy tool for medical education.</description><subject>Artificial Intelligence</subject><subject>Dalle2</subject><subject>Humans</subject><subject>Medical education</subject><subject>Plastic surgery education</subject><subject>Plastic Surgery Procedures</subject><subject>Skin Neoplasms</subject><subject>Soft Tissue Neoplasms</subject><subject>Surgery, Plastic</subject><subject>Text- to-picture</subject><issn>1748-6815</issn><issn>1878-0539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAfJ0cuu-WxS8FKKH4WCF8VjyCazmnW7W5Ndpf_eLa0ehYGZwzPvMA9Cl5TklNDpTZUX1SbljDCeE5ETKY_QmGqlMyL57HiYldDZVFM5QmcpVYQIToU8RSOu6FAzMUby9d122LV97fE34LX9ANyWeL7EocGb2qYuOJz6-AZxi8H3znahbc7RSWnrBBeHPkEv93fPi8ds9fSwXMxXmROEdJkazgnuvJSlL6icUmZ9oa3XWjFQ3FklLaOOlY5aP1OUEiFkyUqgmnMlOZ-g633uJrafPaTOrENyUNe2gbZPhmkyk4JzogeU7VEX25QilGYTw9rGraHE7HSZyux0mZ0uQ4QZdA1LV4f8vliD_1v59TMAt3sAhi-_AkSTXIDGgQ8RXGd8G_7L_wFj_3l_</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Koljonen, Virve</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0398-4829</orcidid></search><sort><creationdate>202306</creationdate><title>What could we make of AI in plastic surgery education</title><author>Koljonen, Virve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-731443cd55fdb15612adb8ad8872e73ca75a21c2fc1ad97110445f2fe18337533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Dalle2</topic><topic>Humans</topic><topic>Medical education</topic><topic>Plastic surgery education</topic><topic>Plastic Surgery Procedures</topic><topic>Skin Neoplasms</topic><topic>Soft Tissue Neoplasms</topic><topic>Surgery, Plastic</topic><topic>Text- to-picture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koljonen, Virve</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of plastic, reconstructive &amp; aesthetic surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koljonen, Virve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What could we make of AI in plastic surgery education</atitle><jtitle>Journal of plastic, reconstructive &amp; aesthetic surgery</jtitle><addtitle>J Plast Reconstr Aesthet Surg</addtitle><date>2023-06</date><risdate>2023</risdate><volume>81</volume><spage>94</spage><epage>96</epage><pages>94-96</pages><issn>1748-6815</issn><eissn>1878-0539</eissn><abstract>To explore the possibilities of artificial intelligence (AI) text-to-picture system, DALL·E 2 was used to generated clinical photographs for medical and plastic surgery education. Generic English text was used to guide AI in three categories: subcutaneous tumor, wound and skin tumor. The most clinically accurate images were chosen for the article or for further editing. AI-generated images with variating clinical accuracy in different categories. The most accurate images were the soft-tissue tumors and the least accurate wounds. This study showed that AI text-to-picture system might be worthy tool for medical education.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37137194</pmid><doi>10.1016/j.bjps.2023.04.055</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-0398-4829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-6815
ispartof Journal of plastic, reconstructive & aesthetic surgery, 2023-06, Vol.81, p.94-96
issn 1748-6815
1878-0539
language eng
recordid cdi_proquest_miscellaneous_2809543308
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Artificial Intelligence
Dalle2
Humans
Medical education
Plastic surgery education
Plastic Surgery Procedures
Skin Neoplasms
Soft Tissue Neoplasms
Surgery, Plastic
Text- to-picture
title What could we make of AI in plastic surgery education
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20could%20we%20make%20of%20AI%20in%20plastic%20surgery%20education&rft.jtitle=Journal%20of%20plastic,%20reconstructive%20&%20aesthetic%20surgery&rft.au=Koljonen,%20Virve&rft.date=2023-06&rft.volume=81&rft.spage=94&rft.epage=96&rft.pages=94-96&rft.issn=1748-6815&rft.eissn=1878-0539&rft_id=info:doi/10.1016/j.bjps.2023.04.055&rft_dat=%3Cproquest_cross%3E2809543308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809543308&rft_id=info:pmid/37137194&rft_els_id=S174868152300205X&rfr_iscdi=true