High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential

Electrochemical CO2 reduction reaction (CO2RR) to value‐added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near‐zero potentials. To reduce cost and improve activity, the high‐dispersive Pd nanoparticle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-09, Vol.19 (37), p.e2301577-e2301577
Hauptverfasser: Zhang, Junru, Chen, Yiqun, Xu, Fengfei, Zhang, Yan, Tian, Jingyi, Guo, Yue, Chen, Guanghai, Wang, Xizhang, Yang, Lijun, Wu, Qiang, Hu, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2301577
container_issue 37
container_start_page e2301577
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Junru
Chen, Yiqun
Xu, Fengfei
Zhang, Yan
Tian, Jingyi
Guo, Yue
Chen, Guanghai
Wang, Xizhang
Yang, Lijun
Wu, Qiang
Hu, Zheng
description Electrochemical CO2 reduction reaction (CO2RR) to value‐added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near‐zero potentials. To reduce cost and improve activity, the high‐dispersive Pd nanoparticles on hierarchical N‐doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave‐assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of >95% within −0.05–0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm−2 at the low potential of −0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N‐doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high‐efficient electrocatalysts for advanced energy conversion.
doi_str_mv 10.1002/smll.202301577
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809541965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809541965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-5b646d6df056c302f92cbb8d7f90f025f10df6085c7aa5482b396e0ce3e4d8553</originalsourceid><addsrcrecordid>eNpdzr9OwzAQBvAIgUT5szJbYmFpOduxk4xQKEWq2grBXDnOpXXlxsF2YeUR-ow8CSkgBqb7pPt9p0uSCwoDCsCuw8baAQPGgYosO0h6VFLelzkrDv8yhePkJIQ1AKcszXrJbmyWq8-P3Z0JLfpg3pDMKzJVjWuVj0ZbDMQ1ZGzQK69XRitLpnvvWqzIUPmy2-65VsuORkdunQuR3FvU0Tu9ws13Zzhj5AmrrY6mK3Rs5PxGRSQqkol7J3MXsYlG2bPkqFY24PnvPE1eRvfPw3F_Mnt4HN5M-i2jMvZFKVNZyaoGITUHVhdMl2VeZXUBNTBRU6hqCbnQmVIizVnJC4mgkWNa5ULw0-Tq527r3esWQ1xsTNBorWrQbcOC5VCIlBZyTy__0bXb-qb7rlMyhazgtOBfzAJ3ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864079319</pqid></control><display><type>article</type><title>High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Junru ; Chen, Yiqun ; Xu, Fengfei ; Zhang, Yan ; Tian, Jingyi ; Guo, Yue ; Chen, Guanghai ; Wang, Xizhang ; Yang, Lijun ; Wu, Qiang ; Hu, Zheng</creator><creatorcontrib>Zhang, Junru ; Chen, Yiqun ; Xu, Fengfei ; Zhang, Yan ; Tian, Jingyi ; Guo, Yue ; Chen, Guanghai ; Wang, Xizhang ; Yang, Lijun ; Wu, Qiang ; Hu, Zheng</creatorcontrib><description>Electrochemical CO2 reduction reaction (CO2RR) to value‐added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near‐zero potentials. To reduce cost and improve activity, the high‐dispersive Pd nanoparticles on hierarchical N‐doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave‐assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of &gt;95% within −0.05–0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm−2 at the low potential of −0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N‐doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high‐efficient electrocatalysts for advanced energy conversion.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202301577</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Charge transfer ; Chemical reduction ; Dispersion ; Electrocatalysts ; Energy conversion ; Ethylene glycol ; Nanoparticles ; Nanotechnology ; Palladium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2301577-e2301577</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Junru</creatorcontrib><creatorcontrib>Chen, Yiqun</creatorcontrib><creatorcontrib>Xu, Fengfei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tian, Jingyi</creatorcontrib><creatorcontrib>Guo, Yue</creatorcontrib><creatorcontrib>Chen, Guanghai</creatorcontrib><creatorcontrib>Wang, Xizhang</creatorcontrib><creatorcontrib>Yang, Lijun</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><title>High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Electrochemical CO2 reduction reaction (CO2RR) to value‐added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near‐zero potentials. To reduce cost and improve activity, the high‐dispersive Pd nanoparticles on hierarchical N‐doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave‐assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of &gt;95% within −0.05–0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm−2 at the low potential of −0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N‐doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high‐efficient electrocatalysts for advanced energy conversion.</description><subject>Carbon dioxide</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Dispersion</subject><subject>Electrocatalysts</subject><subject>Energy conversion</subject><subject>Ethylene glycol</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Palladium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdzr9OwzAQBvAIgUT5szJbYmFpOduxk4xQKEWq2grBXDnOpXXlxsF2YeUR-ow8CSkgBqb7pPt9p0uSCwoDCsCuw8baAQPGgYosO0h6VFLelzkrDv8yhePkJIQ1AKcszXrJbmyWq8-P3Z0JLfpg3pDMKzJVjWuVj0ZbDMQ1ZGzQK69XRitLpnvvWqzIUPmy2-65VsuORkdunQuR3FvU0Tu9ws13Zzhj5AmrrY6mK3Rs5PxGRSQqkol7J3MXsYlG2bPkqFY24PnvPE1eRvfPw3F_Mnt4HN5M-i2jMvZFKVNZyaoGITUHVhdMl2VeZXUBNTBRU6hqCbnQmVIizVnJC4mgkWNa5ULw0-Tq527r3esWQ1xsTNBorWrQbcOC5VCIlBZyTy__0bXb-qb7rlMyhazgtOBfzAJ3ug</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Zhang, Junru</creator><creator>Chen, Yiqun</creator><creator>Xu, Fengfei</creator><creator>Zhang, Yan</creator><creator>Tian, Jingyi</creator><creator>Guo, Yue</creator><creator>Chen, Guanghai</creator><creator>Wang, Xizhang</creator><creator>Yang, Lijun</creator><creator>Wu, Qiang</creator><creator>Hu, Zheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20230901</creationdate><title>High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential</title><author>Zhang, Junru ; Chen, Yiqun ; Xu, Fengfei ; Zhang, Yan ; Tian, Jingyi ; Guo, Yue ; Chen, Guanghai ; Wang, Xizhang ; Yang, Lijun ; Wu, Qiang ; Hu, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-5b646d6df056c302f92cbb8d7f90f025f10df6085c7aa5482b396e0ce3e4d8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Dispersion</topic><topic>Electrocatalysts</topic><topic>Energy conversion</topic><topic>Ethylene glycol</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Palladium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Junru</creatorcontrib><creatorcontrib>Chen, Yiqun</creatorcontrib><creatorcontrib>Xu, Fengfei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Tian, Jingyi</creatorcontrib><creatorcontrib>Guo, Yue</creatorcontrib><creatorcontrib>Chen, Guanghai</creatorcontrib><creatorcontrib>Wang, Xizhang</creatorcontrib><creatorcontrib>Yang, Lijun</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Hu, Zheng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Junru</au><au>Chen, Yiqun</au><au>Xu, Fengfei</au><au>Zhang, Yan</au><au>Tian, Jingyi</au><au>Guo, Yue</au><au>Chen, Guanghai</au><au>Wang, Xizhang</au><au>Yang, Lijun</au><au>Wu, Qiang</au><au>Hu, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>37</issue><spage>e2301577</spage><epage>e2301577</epage><pages>e2301577-e2301577</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Electrochemical CO2 reduction reaction (CO2RR) to value‐added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near‐zero potentials. To reduce cost and improve activity, the high‐dispersive Pd nanoparticles on hierarchical N‐doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave‐assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of &gt;95% within −0.05–0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm−2 at the low potential of −0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N‐doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high‐efficient electrocatalysts for advanced energy conversion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202301577</doi></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-09, Vol.19 (37), p.e2301577-e2301577
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2809541965
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Charge transfer
Chemical reduction
Dispersion
Electrocatalysts
Energy conversion
Ethylene glycol
Nanoparticles
Nanotechnology
Palladium
title High‐Dispersive Pd Nanoparticles on Hierarchical N‐Doped Carbon Nanocages to Boost Electrochemical CO2 Reduction to Formate at Low Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T21%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Dispersive%20Pd%20Nanoparticles%20on%20Hierarchical%20N%E2%80%90Doped%20Carbon%20Nanocages%20to%20Boost%20Electrochemical%20CO2%20Reduction%20to%20Formate%20at%20Low%20Potential&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Junru&rft.date=2023-09-01&rft.volume=19&rft.issue=37&rft.spage=e2301577&rft.epage=e2301577&rft.pages=e2301577-e2301577&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202301577&rft_dat=%3Cproquest%3E2809541965%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864079319&rft_id=info:pmid/&rfr_iscdi=true