Dual enzyme-like Co–FeSe2 nanoflowers with GSH degradation capability for NIR II-enhanced catalytic tumor therapy

Nanozymes mediated catalytic therapy can produce toxic reactive oxygen species (ROS) and destroy the metabolic balance of tumor cells, providing a new direction for cancer treatment. However, the catalytic efficiency of a single nanozyme is limited by the complexity of the tumor microenvironment (hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-05, Vol.11 (19), p.4274-4286
Hauptverfasser: Zhang, Jingge, Enna Ha, Li, Danyang, He, Shuqing, Wang, Luyang, Kuang, Shaolong, Hu, Junqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanozymes mediated catalytic therapy can produce toxic reactive oxygen species (ROS) and destroy the metabolic balance of tumor cells, providing a new direction for cancer treatment. However, the catalytic efficiency of a single nanozyme is limited by the complexity of the tumor microenvironment (hypoxia, GSH overexpression, etc.). In order to overcome these problems, we designed flower-like Co-doped FeSe2 (Co–FeSe2) nanozymes by a simple wet chemistry method. Co–FeSe2 nanozymes not only exhibit high POD and OXD-mimicking activities for facile kinetics, but also effectively consume over-expressed glutathione (GSH), inhibiting the consumption of generated ROS and destroying the metabolic balance of the tumor microenvironment. These catalytic reactions trigger cell death through apoptosis and ferroptosis dual pathways. More importantly, under the NIR II laser irradiation, the catalytic activities of Co–FeSe2 nanozymes are boosted, confirming the photothermal and catalytic synergistic tumor therapy. This study takes advantage of self-cascading engineering that offers new ideas for designing efficient redox nanozymes and promoting their clinical translation.
ISSN:2050-750X
2050-7518
DOI:10.1039/d3tb00220a