Using Series-Series Iwan-Type Models for Understanding Joint Dynamics

In mechanical assemblies, the energy loss induced by joints and interfaces can account for a significant portion of the overall structural dissipation. This work considers the dynamical behavior of an elastic rod on a frictional foundation as a model for the dissipation introduced by micro-slip in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2005-09, Vol.72 (5), p.666-673
Hauptverfasser: Quinn, D. Dane, Segalman, Daniel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In mechanical assemblies, the energy loss induced by joints and interfaces can account for a significant portion of the overall structural dissipation. This work considers the dynamical behavior of an elastic rod on a frictional foundation as a model for the dissipation introduced by micro-slip in mechanical joints. In a quasi-static loading limit, the deformation of the rod and hence the frictional dissipation can be solved in closed form. The resulting model is a continuum model of series arrangements of parallel Jenkins elements. For a general class of normal load distributions, the resulting energy loss per forcing cycle follows a power-law and is qualitatively similar to observed experimental findings. Finally, these results are compared with those obtained from a discrete formulation of the rod including inertial effects. For loading conditions that are consistent with mechanical joints, the numerical results from the discrete model are consistent with the closed form predictions obtained in the quasistatic limit.
ISSN:0021-8936
1528-9036
DOI:10.1115/1.1978918