Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays

The present study complements work on mixture effects measured with bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise ( ), harbor seal (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science--processes & impacts 2023-11, Vol.25 (11), p.1802-1816
Hauptverfasser: Reiter, Eva B, Escher, Beate I, Rojo-Nieto, Elisa, Nolte, Hannah, Siebert, Ursula, Jahnke, Annika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1816
container_issue 11
container_start_page 1802
container_title Environmental science--processes & impacts
container_volume 25
creator Reiter, Eva B
Escher, Beate I
Rojo-Nieto, Elisa
Nolte, Hannah
Siebert, Ursula
Jahnke, Annika
description The present study complements work on mixture effects measured with bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise ( ), harbor seal ( ), ringed seal ( ) and orca ( ) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.
doi_str_mv 10.1039/d3em00033h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809005826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889911288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-f67e01f1f119d9e57d577d0c8d702cbb9576ecde2cc45ed683ca6ff9842f8cd93</originalsourceid><addsrcrecordid>eNpd0U1PAyEQBmBiNLapvfgDDIkXY6zCIgscTf1MNF70vGFhtkWXpcLWWH-91KoHQ8I7h4dJmEFon5JTSpg6sww8IYSx-RYaFoSTiZCKb__VUgzQOKWXbIjkVPJyFw2YoKzgUg5RmM511KaH6D5dN8P9HLDX0XXr8F63GD4WIQUPuF5hZ6CGOMM-WGgzP8H5fl2_M3PwzmSuO92ukku5sNh1-N31MeDaBZ2SXqU9tNPoNsH4J0fo-frqaXo7uX-8uZte3E8M47SfNKUAQpt8qLIKuLBcCEuMtIIUpq4VFyUYC4Ux5xxsKZnRZdMoeV400ljFRuho03cRw9sSUl95lwy0re4gLFNVSKII4bIoMz38R1_CMuZvrJVUitIcWR1vlIkhpQhNtYguT2pVUVKtN1FdsquH703cZnzw03JZe7B_9Hfu7AsEfIS5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889911288</pqid></control><display><type>article</type><title>Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Reiter, Eva B ; Escher, Beate I ; Rojo-Nieto, Elisa ; Nolte, Hannah ; Siebert, Ursula ; Jahnke, Annika</creator><creatorcontrib>Reiter, Eva B ; Escher, Beate I ; Rojo-Nieto, Elisa ; Nolte, Hannah ; Siebert, Ursula ; Jahnke, Annika</creatorcontrib><description>The present study complements work on mixture effects measured with bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise ( ), harbor seal ( ), ringed seal ( ) and orca ( ) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.</description><identifier>ISSN: 2050-7887</identifier><identifier>EISSN: 2050-7895</identifier><identifier>DOI: 10.1039/d3em00033h</identifier><identifier>PMID: 37132588</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Analytical chemistry ; Aquatic mammals ; Bioassays ; Biological effects ; Blubber ; Chemical analysis ; Chemicals ; Contaminants ; Cytotoxicity ; DDT ; Dolphins ; Gas chromatography ; Icebergs ; Liver ; Marine chemistry ; Marine mammals ; Mass spectrometry ; Mass spectroscopy ; Mixtures ; Orcinus orca ; Organs ; Oxidative stress ; Polydimethylsiloxane ; Receptors ; Silicones ; Tonalide</subject><ispartof>Environmental science--processes &amp; impacts, 2023-11, Vol.25 (11), p.1802-1816</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-f67e01f1f119d9e57d577d0c8d702cbb9576ecde2cc45ed683ca6ff9842f8cd93</citedby><cites>FETCH-LOGICAL-c351t-f67e01f1f119d9e57d577d0c8d702cbb9576ecde2cc45ed683ca6ff9842f8cd93</cites><orcidid>0000-0001-5201-3485 ; 0000-0001-5765-7183 ; 0000-0001-7815-151X ; 0000-0002-5304-706X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37132588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reiter, Eva B</creatorcontrib><creatorcontrib>Escher, Beate I</creatorcontrib><creatorcontrib>Rojo-Nieto, Elisa</creatorcontrib><creatorcontrib>Nolte, Hannah</creatorcontrib><creatorcontrib>Siebert, Ursula</creatorcontrib><creatorcontrib>Jahnke, Annika</creatorcontrib><title>Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays</title><title>Environmental science--processes &amp; impacts</title><addtitle>Environ Sci Process Impacts</addtitle><description>The present study complements work on mixture effects measured with bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise ( ), harbor seal ( ), ringed seal ( ) and orca ( ) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.</description><subject>Analytical chemistry</subject><subject>Aquatic mammals</subject><subject>Bioassays</subject><subject>Biological effects</subject><subject>Blubber</subject><subject>Chemical analysis</subject><subject>Chemicals</subject><subject>Contaminants</subject><subject>Cytotoxicity</subject><subject>DDT</subject><subject>Dolphins</subject><subject>Gas chromatography</subject><subject>Icebergs</subject><subject>Liver</subject><subject>Marine chemistry</subject><subject>Marine mammals</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mixtures</subject><subject>Orcinus orca</subject><subject>Organs</subject><subject>Oxidative stress</subject><subject>Polydimethylsiloxane</subject><subject>Receptors</subject><subject>Silicones</subject><subject>Tonalide</subject><issn>2050-7887</issn><issn>2050-7895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0U1PAyEQBmBiNLapvfgDDIkXY6zCIgscTf1MNF70vGFhtkWXpcLWWH-91KoHQ8I7h4dJmEFon5JTSpg6sww8IYSx-RYaFoSTiZCKb__VUgzQOKWXbIjkVPJyFw2YoKzgUg5RmM511KaH6D5dN8P9HLDX0XXr8F63GD4WIQUPuF5hZ6CGOMM-WGgzP8H5fl2_M3PwzmSuO92ukku5sNh1-N31MeDaBZ2SXqU9tNPoNsH4J0fo-frqaXo7uX-8uZte3E8M47SfNKUAQpt8qLIKuLBcCEuMtIIUpq4VFyUYC4Ux5xxsKZnRZdMoeV400ljFRuho03cRw9sSUl95lwy0re4gLFNVSKII4bIoMz38R1_CMuZvrJVUitIcWR1vlIkhpQhNtYguT2pVUVKtN1FdsquH703cZnzw03JZe7B_9Hfu7AsEfIS5</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Reiter, Eva B</creator><creator>Escher, Beate I</creator><creator>Rojo-Nieto, Elisa</creator><creator>Nolte, Hannah</creator><creator>Siebert, Ursula</creator><creator>Jahnke, Annika</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5201-3485</orcidid><orcidid>https://orcid.org/0000-0001-5765-7183</orcidid><orcidid>https://orcid.org/0000-0001-7815-151X</orcidid><orcidid>https://orcid.org/0000-0002-5304-706X</orcidid></search><sort><creationdate>20231115</creationdate><title>Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays</title><author>Reiter, Eva B ; Escher, Beate I ; Rojo-Nieto, Elisa ; Nolte, Hannah ; Siebert, Ursula ; Jahnke, Annika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-f67e01f1f119d9e57d577d0c8d702cbb9576ecde2cc45ed683ca6ff9842f8cd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Aquatic mammals</topic><topic>Bioassays</topic><topic>Biological effects</topic><topic>Blubber</topic><topic>Chemical analysis</topic><topic>Chemicals</topic><topic>Contaminants</topic><topic>Cytotoxicity</topic><topic>DDT</topic><topic>Dolphins</topic><topic>Gas chromatography</topic><topic>Icebergs</topic><topic>Liver</topic><topic>Marine chemistry</topic><topic>Marine mammals</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mixtures</topic><topic>Orcinus orca</topic><topic>Organs</topic><topic>Oxidative stress</topic><topic>Polydimethylsiloxane</topic><topic>Receptors</topic><topic>Silicones</topic><topic>Tonalide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reiter, Eva B</creatorcontrib><creatorcontrib>Escher, Beate I</creatorcontrib><creatorcontrib>Rojo-Nieto, Elisa</creatorcontrib><creatorcontrib>Nolte, Hannah</creatorcontrib><creatorcontrib>Siebert, Ursula</creatorcontrib><creatorcontrib>Jahnke, Annika</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science--processes &amp; impacts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reiter, Eva B</au><au>Escher, Beate I</au><au>Rojo-Nieto, Elisa</au><au>Nolte, Hannah</au><au>Siebert, Ursula</au><au>Jahnke, Annika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays</atitle><jtitle>Environmental science--processes &amp; impacts</jtitle><addtitle>Environ Sci Process Impacts</addtitle><date>2023-11-15</date><risdate>2023</risdate><volume>25</volume><issue>11</issue><spage>1802</spage><epage>1816</epage><pages>1802-1816</pages><issn>2050-7887</issn><eissn>2050-7895</eissn><abstract>The present study complements work on mixture effects measured with bioassays of passive equilibrium sampling extracts using the silicone polydimethylsiloxane (PDMS) in organs from marine mammals with chemical profiling. Blubber, liver, kidney and brain tissues of harbor porpoise ( ), harbor seal ( ), ringed seal ( ) and orca ( ) from the North and Baltic Seas were investigated. We analyzed 117 chemicals including legacy and emerging contaminants using gas chromatography-high resolution mass spectrometry and quantified 70 of those chemicals in at least one sample. No systematic differences between the organs were found. Only for single compounds a clear distribution pattern was observed. For example, 4,4'-dichlorodiphenyltrichloroethane, enzacamene and etofenprox were mainly detected in blubber, whereas tonalide and the hexachlorocyclohexanes were more often found in liver. Furthermore, we compared the chemical profiling with the bioanalytical results using an iceberg mixture model, evaluating how much of the biological effect could be explained by the analyzed chemicals. The mixture effect predicted from the quantified chemical concentrations explained 0.014-83% of the aryl hydrocarbon receptor activating effect (AhR-CALUX), but less than 0.13% for the activation of the oxidative stress response (AREc32) and peroxisome-proliferator activated receptor (PPARγ). The quantified chemicals also explained between 0.044-45% of the cytotoxic effect measured with the AhR-CALUX. The largest fraction of the observed effect was explained for the orca, which was the individuum with the highest chemical burden. This study underlines that chemical analysis and bioassays are complementary to comprehensively characterize the mixture exposome of marine mammals.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37132588</pmid><doi>10.1039/d3em00033h</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5201-3485</orcidid><orcidid>https://orcid.org/0000-0001-5765-7183</orcidid><orcidid>https://orcid.org/0000-0001-7815-151X</orcidid><orcidid>https://orcid.org/0000-0002-5304-706X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7887
ispartof Environmental science--processes & impacts, 2023-11, Vol.25 (11), p.1802-1816
issn 2050-7887
2050-7895
language eng
recordid cdi_proquest_miscellaneous_2809005826
source Royal Society Of Chemistry Journals 2008-
subjects Analytical chemistry
Aquatic mammals
Bioassays
Biological effects
Blubber
Chemical analysis
Chemicals
Contaminants
Cytotoxicity
DDT
Dolphins
Gas chromatography
Icebergs
Liver
Marine chemistry
Marine mammals
Mass spectrometry
Mass spectroscopy
Mixtures
Orcinus orca
Organs
Oxidative stress
Polydimethylsiloxane
Receptors
Silicones
Tonalide
title Characterizing the marine mammal exposome by iceberg modeling, linking chemical analysis and in vitro bioassays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20marine%20mammal%20exposome%20by%20iceberg%20modeling,%20linking%20chemical%20analysis%20and%20in%20vitro%20bioassays&rft.jtitle=Environmental%20science--processes%20&%20impacts&rft.au=Reiter,%20Eva%20B&rft.date=2023-11-15&rft.volume=25&rft.issue=11&rft.spage=1802&rft.epage=1816&rft.pages=1802-1816&rft.issn=2050-7887&rft.eissn=2050-7895&rft_id=info:doi/10.1039/d3em00033h&rft_dat=%3Cproquest_cross%3E2889911288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2889911288&rft_id=info:pmid/37132588&rfr_iscdi=true