Explainable Knowledge Distillation for On-Device Chest X-Ray Classification
Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computati...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics 2024-07, Vol.21 (4), p.846-856 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 856 |
---|---|
container_issue | 4 |
container_start_page | 846 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 21 |
creator | Termritthikun, Chakkrit Umer, Ayaz Suwanwimolkul, Suwichaya Xia, Feng Lee, Ivan |
description | Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS. |
doi_str_mv | 10.1109/TCBB.2023.3272333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809004627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10114588</ieee_id><sourcerecordid>2809004627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-fa11b16388b67007164075d800e849a8929382cd2a30036e13ce00e10e2fd9d23</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-pszubZPdo0_pBCwWp4C1sk4mupEnNpmr_vYmt4mkG5nlfhoexcw5DzkFfL-LRaChA4BBFJBDxgPV5EES-1qE87HYZ-IEOscdOnHsDEFKDPGY9jDiCCKDPppOvdWFsaZYFedOy-iwoeyFvbF1ji8I0tiq9vKq9eemP6cOm5MWv5Brv2X80Wy8ujHM2t-kPeMqOclM4OtvPAXu6nSzie382v3uIb2Z-ikI0fm44X_IQlVqGEUDEQwlRkCkAUlIbpYVGJdJMGATAkDim1N44kMgznQkcsKtd77qu3jftN8nKupTad0uqNi4RCjSADEXUonyHpnXlXE15sq7tytTbhEPSOUw6h0nnMNk7bDOX-_rNckXZX-JXWgtc7ABLRP8KOZeBUvgN8XhzcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2809004627</pqid></control><display><type>article</type><title>Explainable Knowledge Distillation for On-Device Chest X-Ray Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Termritthikun, Chakkrit ; Umer, Ayaz ; Suwanwimolkul, Suwichaya ; Xia, Feng ; Lee, Ivan</creator><creatorcontrib>Termritthikun, Chakkrit ; Umer, Ayaz ; Suwanwimolkul, Suwichaya ; Xia, Feng ; Lee, Ivan</creatorcontrib><description>Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.</description><identifier>ISSN: 1545-5963</identifier><identifier>ISSN: 1557-9964</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2023.3272333</identifier><identifier>PMID: 37130250</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; chest X-ray ; Computational modeling ; Computer architecture ; Databases, Factual ; Deep Learning ; Diseases ; explainable artificial intelligence ; Humans ; Image classification ; Knowledge distillation ; on-device ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiography, Thoracic - methods ; Transformers</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.846-856</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-fa11b16388b67007164075d800e849a8929382cd2a30036e13ce00e10e2fd9d23</citedby><cites>FETCH-LOGICAL-c322t-fa11b16388b67007164075d800e849a8929382cd2a30036e13ce00e10e2fd9d23</cites><orcidid>0000-0002-2370-636X ; 0000-0002-8324-1859 ; 0000-0002-1508-3123 ; 0000-0001-7369-9711 ; 0000-0002-2826-6367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10114588$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10114588$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37130250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Termritthikun, Chakkrit</creatorcontrib><creatorcontrib>Umer, Ayaz</creatorcontrib><creatorcontrib>Suwanwimolkul, Suwichaya</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><title>Explainable Knowledge Distillation for On-Device Chest X-Ray Classification</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>chest X-ray</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Databases, Factual</subject><subject>Deep Learning</subject><subject>Diseases</subject><subject>explainable artificial intelligence</subject><subject>Humans</subject><subject>Image classification</subject><subject>Knowledge distillation</subject><subject>on-device</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiography, Thoracic - methods</subject><subject>Transformers</subject><issn>1545-5963</issn><issn>1557-9964</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-pszubZPdo0_pBCwWp4C1sk4mupEnNpmr_vYmt4mkG5nlfhoexcw5DzkFfL-LRaChA4BBFJBDxgPV5EES-1qE87HYZ-IEOscdOnHsDEFKDPGY9jDiCCKDPppOvdWFsaZYFedOy-iwoeyFvbF1ji8I0tiq9vKq9eemP6cOm5MWv5Brv2X80Wy8ujHM2t-kPeMqOclM4OtvPAXu6nSzie382v3uIb2Z-ikI0fm44X_IQlVqGEUDEQwlRkCkAUlIbpYVGJdJMGATAkDim1N44kMgznQkcsKtd77qu3jftN8nKupTad0uqNi4RCjSADEXUonyHpnXlXE15sq7tytTbhEPSOUw6h0nnMNk7bDOX-_rNckXZX-JXWgtc7ABLRP8KOZeBUvgN8XhzcA</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Termritthikun, Chakkrit</creator><creator>Umer, Ayaz</creator><creator>Suwanwimolkul, Suwichaya</creator><creator>Xia, Feng</creator><creator>Lee, Ivan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2370-636X</orcidid><orcidid>https://orcid.org/0000-0002-8324-1859</orcidid><orcidid>https://orcid.org/0000-0002-1508-3123</orcidid><orcidid>https://orcid.org/0000-0001-7369-9711</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid></search><sort><creationdate>20240701</creationdate><title>Explainable Knowledge Distillation for On-Device Chest X-Ray Classification</title><author>Termritthikun, Chakkrit ; Umer, Ayaz ; Suwanwimolkul, Suwichaya ; Xia, Feng ; Lee, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-fa11b16388b67007164075d800e849a8929382cd2a30036e13ce00e10e2fd9d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>chest X-ray</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Databases, Factual</topic><topic>Deep Learning</topic><topic>Diseases</topic><topic>explainable artificial intelligence</topic><topic>Humans</topic><topic>Image classification</topic><topic>Knowledge distillation</topic><topic>on-device</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiography, Thoracic - methods</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Termritthikun, Chakkrit</creatorcontrib><creatorcontrib>Umer, Ayaz</creatorcontrib><creatorcontrib>Suwanwimolkul, Suwichaya</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Termritthikun, Chakkrit</au><au>Umer, Ayaz</au><au>Suwanwimolkul, Suwichaya</au><au>Xia, Feng</au><au>Lee, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explainable Knowledge Distillation for On-Device Chest X-Ray Classification</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>846</spage><epage>856</epage><pages>846-856</pages><issn>1545-5963</issn><issn>1557-9964</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37130250</pmid><doi>10.1109/TCBB.2023.3272333</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2370-636X</orcidid><orcidid>https://orcid.org/0000-0002-8324-1859</orcidid><orcidid>https://orcid.org/0000-0002-1508-3123</orcidid><orcidid>https://orcid.org/0000-0001-7369-9711</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2024-07, Vol.21 (4), p.846-856 |
issn | 1545-5963 1557-9964 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_2809004627 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial Intelligence chest X-ray Computational modeling Computer architecture Databases, Factual Deep Learning Diseases explainable artificial intelligence Humans Image classification Knowledge distillation on-device Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Thoracic - methods Transformers |
title | Explainable Knowledge Distillation for On-Device Chest X-Ray Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explainable%20Knowledge%20Distillation%20for%20On-Device%20Chest%20X-Ray%20Classification&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Termritthikun,%20Chakkrit&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=846&rft.epage=856&rft.pages=846-856&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2023.3272333&rft_dat=%3Cproquest_RIE%3E2809004627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2809004627&rft_id=info:pmid/37130250&rft_ieee_id=10114588&rfr_iscdi=true |