Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer
The layer‐by‐layer (LbL) solution‐processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor–acceptor (D/A) interfaces, and favorable charge‐transport pathways. In this work, a wide‐bandgap component poly(9‐vinylcarbazole) (PVK) is added to the upper elec...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-07, Vol.35 (28), p.e2211372-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | e2211372 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Chen, Qiaoling Huang, Hao Hu, Di Zhang, Cai'e Xu, Xinjun Lu, Hao Wu, Yonggang Yang, Chuluo Bo, Zhishan |
description | The layer‐by‐layer (LbL) solution‐processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor–acceptor (D/A) interfaces, and favorable charge‐transport pathways. In this work, a wide‐bandgap component poly(9‐vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL‐processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n‐type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK‐doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly‐used high‐efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL‐processed OSCs.
Wide‐bandgap polymer poly(9‐vinylcarbazole) (PVK) is added to the acceptor layer of layer‐by‐layer organic solar cells (OSCs). Besides enhancing molecular stacking, PVK n‐dopes the electron acceptor, increases the electron concentration, and improves charge transport, leading to elevated power conversion efficiency in OSCs, especially for the D18/L8‐BO active layer which demonstrates device efficiency over 19% with PVK addition. |
doi_str_mv | 10.1002/adma.202211372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2809004302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2809004302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-3875cb8c0bff01cd6ddc2d0eefe208724c003c2f09488fa16eef5d1f3920963c3</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqGwZYksselmwrE9Ny9DyiVSUCtBxXLk2Mdhqhl7sGeKsuMRkHjDPkmdprQSm25sWf7Od-zzE_KawZwB8HfK9GrOgXPGRMWfkBkrOMtykMVTMgMpikyWeX1EXsR4CQCyhPI5ORIVE1BUckb-rvoh-KvWben4A-k5ButDr5xG6i1dqx2G699_Nru03B7oefAaY0RDz8JWuVbTr75TgS6x6yK9ahVduTF4M-m9U9HvrcFU_F45s1UDPfWDciNt3ehvG14MQ5IutMZh9OHQ8CV5ZlUX8dXdfkwuPn74tvycrc8-rZaLdaZFJXgm6qrQm1rDxlpg2pTGaG4A0SKHuuK5BhCaW5B5XVvFynRTGGaF5GkOQotjcnLwpgn8nDCOTd9Gnf6hHPopNrwGCZAL4Al9-x966afg0usSJcqS1awsEjU_UDr4GAPaZghtr8KuYdDs42r2cTX3caWCN3faadOjucf_5ZMAeQB-tR3uHtE1i9Mviwf5DdRZpS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836618165</pqid></control><display><type>article</type><title>Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Qiaoling ; Huang, Hao ; Hu, Di ; Zhang, Cai'e ; Xu, Xinjun ; Lu, Hao ; Wu, Yonggang ; Yang, Chuluo ; Bo, Zhishan</creator><creatorcontrib>Chen, Qiaoling ; Huang, Hao ; Hu, Di ; Zhang, Cai'e ; Xu, Xinjun ; Lu, Hao ; Wu, Yonggang ; Yang, Chuluo ; Bo, Zhishan</creatorcontrib><description>The layer‐by‐layer (LbL) solution‐processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor–acceptor (D/A) interfaces, and favorable charge‐transport pathways. In this work, a wide‐bandgap component poly(9‐vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL‐processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n‐type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK‐doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly‐used high‐efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL‐processed OSCs.
Wide‐bandgap polymer poly(9‐vinylcarbazole) (PVK) is added to the acceptor layer of layer‐by‐layer organic solar cells (OSCs). Besides enhancing molecular stacking, PVK n‐dopes the electron acceptor, increases the electron concentration, and improves charge transport, leading to elevated power conversion efficiency in OSCs, especially for the D18/L8‐BO active layer which demonstrates device efficiency over 19% with PVK addition.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211372</identifier><identifier>PMID: 37130579</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Additives ; charge carrier concentrations ; Charge transport ; Electron paramagnetic resonance ; Energy conversion efficiency ; Energy gap ; Excitons ; layer‐by‐layer structures ; Materials science ; n‐type dopings ; organic solar cells ; Performance enhancement ; Phase separation ; Photoelectrons ; Photovoltaic cells ; Polyvinyl carbazole ; quasi‐planar heterojunctions ; Seebeck effect ; Solar cells ; Vertical separation</subject><ispartof>Advanced materials (Weinheim), 2023-07, Vol.35 (28), p.e2211372-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-3875cb8c0bff01cd6ddc2d0eefe208724c003c2f09488fa16eef5d1f3920963c3</citedby><cites>FETCH-LOGICAL-c3732-3875cb8c0bff01cd6ddc2d0eefe208724c003c2f09488fa16eef5d1f3920963c3</cites><orcidid>0000-0002-0750-352X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211372$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211372$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37130579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiaoling</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Zhang, Cai'e</creatorcontrib><creatorcontrib>Xu, Xinjun</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wu, Yonggang</creatorcontrib><creatorcontrib>Yang, Chuluo</creatorcontrib><creatorcontrib>Bo, Zhishan</creatorcontrib><title>Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The layer‐by‐layer (LbL) solution‐processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor–acceptor (D/A) interfaces, and favorable charge‐transport pathways. In this work, a wide‐bandgap component poly(9‐vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL‐processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n‐type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK‐doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly‐used high‐efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL‐processed OSCs.
Wide‐bandgap polymer poly(9‐vinylcarbazole) (PVK) is added to the acceptor layer of layer‐by‐layer organic solar cells (OSCs). Besides enhancing molecular stacking, PVK n‐dopes the electron acceptor, increases the electron concentration, and improves charge transport, leading to elevated power conversion efficiency in OSCs, especially for the D18/L8‐BO active layer which demonstrates device efficiency over 19% with PVK addition.</description><subject>Additives</subject><subject>charge carrier concentrations</subject><subject>Charge transport</subject><subject>Electron paramagnetic resonance</subject><subject>Energy conversion efficiency</subject><subject>Energy gap</subject><subject>Excitons</subject><subject>layer‐by‐layer structures</subject><subject>Materials science</subject><subject>n‐type dopings</subject><subject>organic solar cells</subject><subject>Performance enhancement</subject><subject>Phase separation</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Polyvinyl carbazole</subject><subject>quasi‐planar heterojunctions</subject><subject>Seebeck effect</subject><subject>Solar cells</subject><subject>Vertical separation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhi0EoqGwZYksselmwrE9Ny9DyiVSUCtBxXLk2Mdhqhl7sGeKsuMRkHjDPkmdprQSm25sWf7Od-zzE_KawZwB8HfK9GrOgXPGRMWfkBkrOMtykMVTMgMpikyWeX1EXsR4CQCyhPI5ORIVE1BUckb-rvoh-KvWben4A-k5ButDr5xG6i1dqx2G699_Nru03B7oefAaY0RDz8JWuVbTr75TgS6x6yK9ahVduTF4M-m9U9HvrcFU_F45s1UDPfWDciNt3ehvG14MQ5IutMZh9OHQ8CV5ZlUX8dXdfkwuPn74tvycrc8-rZaLdaZFJXgm6qrQm1rDxlpg2pTGaG4A0SKHuuK5BhCaW5B5XVvFynRTGGaF5GkOQotjcnLwpgn8nDCOTd9Gnf6hHPopNrwGCZAL4Al9-x966afg0usSJcqS1awsEjU_UDr4GAPaZghtr8KuYdDs42r2cTX3caWCN3faadOjucf_5ZMAeQB-tR3uHtE1i9Mviwf5DdRZpS0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Qiaoling</creator><creator>Huang, Hao</creator><creator>Hu, Di</creator><creator>Zhang, Cai'e</creator><creator>Xu, Xinjun</creator><creator>Lu, Hao</creator><creator>Wu, Yonggang</creator><creator>Yang, Chuluo</creator><creator>Bo, Zhishan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0750-352X</orcidid></search><sort><creationdate>20230701</creationdate><title>Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer</title><author>Chen, Qiaoling ; Huang, Hao ; Hu, Di ; Zhang, Cai'e ; Xu, Xinjun ; Lu, Hao ; Wu, Yonggang ; Yang, Chuluo ; Bo, Zhishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-3875cb8c0bff01cd6ddc2d0eefe208724c003c2f09488fa16eef5d1f3920963c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Additives</topic><topic>charge carrier concentrations</topic><topic>Charge transport</topic><topic>Electron paramagnetic resonance</topic><topic>Energy conversion efficiency</topic><topic>Energy gap</topic><topic>Excitons</topic><topic>layer‐by‐layer structures</topic><topic>Materials science</topic><topic>n‐type dopings</topic><topic>organic solar cells</topic><topic>Performance enhancement</topic><topic>Phase separation</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Polyvinyl carbazole</topic><topic>quasi‐planar heterojunctions</topic><topic>Seebeck effect</topic><topic>Solar cells</topic><topic>Vertical separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiaoling</creatorcontrib><creatorcontrib>Huang, Hao</creatorcontrib><creatorcontrib>Hu, Di</creatorcontrib><creatorcontrib>Zhang, Cai'e</creatorcontrib><creatorcontrib>Xu, Xinjun</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><creatorcontrib>Wu, Yonggang</creatorcontrib><creatorcontrib>Yang, Chuluo</creatorcontrib><creatorcontrib>Bo, Zhishan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiaoling</au><au>Huang, Hao</au><au>Hu, Di</au><au>Zhang, Cai'e</au><au>Xu, Xinjun</au><au>Lu, Hao</au><au>Wu, Yonggang</au><au>Yang, Chuluo</au><au>Bo, Zhishan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>28</issue><spage>e2211372</spage><epage>n/a</epage><pages>e2211372-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The layer‐by‐layer (LbL) solution‐processed organic solar cells (OSCs) are conductive to achieve vertical phase separation, tunable donor–acceptor (D/A) interfaces, and favorable charge‐transport pathways. In this work, a wide‐bandgap component poly(9‐vinylcarbazole) (PVK) is added to the upper electron acceptor layer to improve the performance of LbL‐processed OSCs. Results show that the PVK component can adjust the film morphology, dope the electron acceptor, increase the electron concentration, and improve charge transport. Such n‐type doping is verified by Seebeck coefficient measurement, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance characterization. In addition, the fluorescence intensity and exciton lifetime of the PVK‐doped acceptor film are increased, thus being beneficial for exciton diffusion to the D/A interface. Therefore, the power conversion efficiency (PCE) of LbL OSCs increases when 2.50 wt.% PVK is employed in the electron acceptor layer of commonly‐used high‐efficiency system and a maximum value of 19.05% can be achieved. The role of PVK played in the active layer is different from those of additives and ternary components reported previously, so the results provide an alternative way to enhance the device performance of LbL‐processed OSCs.
Wide‐bandgap polymer poly(9‐vinylcarbazole) (PVK) is added to the acceptor layer of layer‐by‐layer organic solar cells (OSCs). Besides enhancing molecular stacking, PVK n‐dopes the electron acceptor, increases the electron concentration, and improves charge transport, leading to elevated power conversion efficiency in OSCs, especially for the D18/L8‐BO active layer which demonstrates device efficiency over 19% with PVK addition.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37130579</pmid><doi>10.1002/adma.202211372</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0750-352X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-07, Vol.35 (28), p.e2211372-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2809004302 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Additives charge carrier concentrations Charge transport Electron paramagnetic resonance Energy conversion efficiency Energy gap Excitons layer‐by‐layer structures Materials science n‐type dopings organic solar cells Performance enhancement Phase separation Photoelectrons Photovoltaic cells Polyvinyl carbazole quasi‐planar heterojunctions Seebeck effect Solar cells Vertical separation |
title | Improving the Performance of Layer‐by‐Layer Processed Organic Solar Cells via Introducing a Wide‐Bandgap Dopant into the Upper Acceptor Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Performance%20of%20Layer%E2%80%90by%E2%80%90Layer%20Processed%20Organic%20Solar%20Cells%20via%20Introducing%20a%20Wide%E2%80%90Bandgap%20Dopant%20into%20the%20Upper%20Acceptor%20Layer&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Qiaoling&rft.date=2023-07-01&rft.volume=35&rft.issue=28&rft.spage=e2211372&rft.epage=n/a&rft.pages=e2211372-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211372&rft_dat=%3Cproquest_cross%3E2809004302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2836618165&rft_id=info:pmid/37130579&rfr_iscdi=true |