Representation and structural difficulty in genetic programming

Standard tree-based genetic programming suffers from a structural difficulty problem in that it is unable to search effectively for solutions requiring very full or very narrow trees. This deficiency has been variously explained as a consequence of restrictions imposed by the tree structure or as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2006-04, Vol.10 (2), p.157-166
Hauptverfasser: Nguyen Xuan Hoai, McKay, R.I., Essam, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 2
container_start_page 157
container_title IEEE transactions on evolutionary computation
container_volume 10
creator Nguyen Xuan Hoai
McKay, R.I.
Essam, D.
description Standard tree-based genetic programming suffers from a structural difficulty problem in that it is unable to search effectively for solutions requiring very full or very narrow trees. This deficiency has been variously explained as a consequence of restrictions imposed by the tree structure or as a result of the numerical distribution of tree shapes. We show that by using a different tree-based representation and local (insertion and deletion) structural modification operators, that this problem can be almost eliminated even with trivial (stochastic hill-climbing) search methods, thus eliminating the above explanations. We argue, instead, that structural difficulty is a consequence of the large step size of the operators in standard genetic programming, which is itself a consequence of the fixed-arity property embodied in its representation.
doi_str_mv 10.1109/TEVC.2006.871252
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28089116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1613934</ieee_id><sourcerecordid>2342476511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-3167847c5e16a86a11404f1a3f8653c47020b3d3ca32373bf80aeadcb75d2de33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFbvgpfFg562ZpJskj2JlPoBBUGqeAtpNltSdrM1yR76781SQfDgaebwzLwzT5ZdApoBoOputfiYzzBCbCY44BIfZROoKBQIYXaceiSqgnPxeZqdhbBFCGgJ1SS7fzM7b4JxUUXbu1y5Og_RDzoOXrV5bZvG6qGN-9y6fGOciVbnO99vvOo66zbn2Umj2mAufuo0e39crObPxfL16WX-sCw0KUksCDAuKNelAaYEUwAU0QYUaQQriaYcYbQmNdGKYMLJuhFIGVXrNS9rXBtCptntYW_K_hpMiLKzQZu2Vc70Q5CiYiBECknkzb8kFkkFAEvg9R9w2w_epS9kOooxUtIxFx0g7fsQvGnkzttO-b0EJEfxchQvR_HyID6NXB1GrDHmF2dAKkLJN5Ohflk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865663543</pqid></control><display><type>article</type><title>Representation and structural difficulty in genetic programming</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen Xuan Hoai ; McKay, R.I. ; Essam, D.</creator><creatorcontrib>Nguyen Xuan Hoai ; McKay, R.I. ; Essam, D.</creatorcontrib><description>Standard tree-based genetic programming suffers from a structural difficulty problem in that it is unable to search effectively for solutions requiring very full or very narrow trees. This deficiency has been variously explained as a consequence of restrictions imposed by the tree structure or as a result of the numerical distribution of tree shapes. We show that by using a different tree-based representation and local (insertion and deletion) structural modification operators, that this problem can be almost eliminated even with trivial (stochastic hill-climbing) search methods, thus eliminating the above explanations. We argue, instead, that structural difficulty is a consequence of the large step size of the operators in standard genetic programming, which is itself a consequence of the fixed-arity property embodied in its representation.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2006.871252</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Australia ; Deletion ; Extraterrestrial measurements ; Genetic programming ; genetic programming (GP) ; Genetics ; Information technology ; Insertion ; operator ; Operators ; Programming ; representation ; Representations ; Search methods ; Shape ; Stochastic processes ; structural difficulty ; Topology ; Tree data structures ; Trees</subject><ispartof>IEEE transactions on evolutionary computation, 2006-04, Vol.10 (2), p.157-166</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-3167847c5e16a86a11404f1a3f8653c47020b3d3ca32373bf80aeadcb75d2de33</citedby><cites>FETCH-LOGICAL-c353t-3167847c5e16a86a11404f1a3f8653c47020b3d3ca32373bf80aeadcb75d2de33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1613934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1613934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen Xuan Hoai</creatorcontrib><creatorcontrib>McKay, R.I.</creatorcontrib><creatorcontrib>Essam, D.</creatorcontrib><title>Representation and structural difficulty in genetic programming</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Standard tree-based genetic programming suffers from a structural difficulty problem in that it is unable to search effectively for solutions requiring very full or very narrow trees. This deficiency has been variously explained as a consequence of restrictions imposed by the tree structure or as a result of the numerical distribution of tree shapes. We show that by using a different tree-based representation and local (insertion and deletion) structural modification operators, that this problem can be almost eliminated even with trivial (stochastic hill-climbing) search methods, thus eliminating the above explanations. We argue, instead, that structural difficulty is a consequence of the large step size of the operators in standard genetic programming, which is itself a consequence of the fixed-arity property embodied in its representation.</description><subject>Australia</subject><subject>Deletion</subject><subject>Extraterrestrial measurements</subject><subject>Genetic programming</subject><subject>genetic programming (GP)</subject><subject>Genetics</subject><subject>Information technology</subject><subject>Insertion</subject><subject>operator</subject><subject>Operators</subject><subject>Programming</subject><subject>representation</subject><subject>Representations</subject><subject>Search methods</subject><subject>Shape</subject><subject>Stochastic processes</subject><subject>structural difficulty</subject><subject>Topology</subject><subject>Tree data structures</subject><subject>Trees</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhhdRsFbvgpfFg562ZpJskj2JlPoBBUGqeAtpNltSdrM1yR76781SQfDgaebwzLwzT5ZdApoBoOputfiYzzBCbCY44BIfZROoKBQIYXaceiSqgnPxeZqdhbBFCGgJ1SS7fzM7b4JxUUXbu1y5Og_RDzoOXrV5bZvG6qGN-9y6fGOciVbnO99vvOo66zbn2Umj2mAufuo0e39crObPxfL16WX-sCw0KUksCDAuKNelAaYEUwAU0QYUaQQriaYcYbQmNdGKYMLJuhFIGVXrNS9rXBtCptntYW_K_hpMiLKzQZu2Vc70Q5CiYiBECknkzb8kFkkFAEvg9R9w2w_epS9kOooxUtIxFx0g7fsQvGnkzttO-b0EJEfxchQvR_HyID6NXB1GrDHmF2dAKkLJN5Ohflk</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Nguyen Xuan Hoai</creator><creator>McKay, R.I.</creator><creator>Essam, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060401</creationdate><title>Representation and structural difficulty in genetic programming</title><author>Nguyen Xuan Hoai ; McKay, R.I. ; Essam, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-3167847c5e16a86a11404f1a3f8653c47020b3d3ca32373bf80aeadcb75d2de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Australia</topic><topic>Deletion</topic><topic>Extraterrestrial measurements</topic><topic>Genetic programming</topic><topic>genetic programming (GP)</topic><topic>Genetics</topic><topic>Information technology</topic><topic>Insertion</topic><topic>operator</topic><topic>Operators</topic><topic>Programming</topic><topic>representation</topic><topic>Representations</topic><topic>Search methods</topic><topic>Shape</topic><topic>Stochastic processes</topic><topic>structural difficulty</topic><topic>Topology</topic><topic>Tree data structures</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen Xuan Hoai</creatorcontrib><creatorcontrib>McKay, R.I.</creatorcontrib><creatorcontrib>Essam, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen Xuan Hoai</au><au>McKay, R.I.</au><au>Essam, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation and structural difficulty in genetic programming</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2006-04-01</date><risdate>2006</risdate><volume>10</volume><issue>2</issue><spage>157</spage><epage>166</epage><pages>157-166</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Standard tree-based genetic programming suffers from a structural difficulty problem in that it is unable to search effectively for solutions requiring very full or very narrow trees. This deficiency has been variously explained as a consequence of restrictions imposed by the tree structure or as a result of the numerical distribution of tree shapes. We show that by using a different tree-based representation and local (insertion and deletion) structural modification operators, that this problem can be almost eliminated even with trivial (stochastic hill-climbing) search methods, thus eliminating the above explanations. We argue, instead, that structural difficulty is a consequence of the large step size of the operators in standard genetic programming, which is itself a consequence of the fixed-arity property embodied in its representation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2006.871252</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2006-04, Vol.10 (2), p.157-166
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_28089116
source IEEE Electronic Library (IEL)
subjects Australia
Deletion
Extraterrestrial measurements
Genetic programming
genetic programming (GP)
Genetics
Information technology
Insertion
operator
Operators
Programming
representation
Representations
Search methods
Shape
Stochastic processes
structural difficulty
Topology
Tree data structures
Trees
title Representation and structural difficulty in genetic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20and%20structural%20difficulty%20in%20genetic%20programming&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Nguyen%20Xuan%20Hoai&rft.date=2006-04-01&rft.volume=10&rft.issue=2&rft.spage=157&rft.epage=166&rft.pages=157-166&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2006.871252&rft_dat=%3Cproquest_RIE%3E2342476511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865663543&rft_id=info:pmid/&rft_ieee_id=1613934&rfr_iscdi=true