Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring

We propose pulse power generation (PPG) amperometry as an advanced readout realized for Prussian blue (PB)-based (bio)­sensors. In contrast to the conventional power generation mode, when the current response is generated upon continuous short-circuiting, the suggested pulse regime is fulfilled by p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2023-05, Vol.95 (19), p.7528-7535
Hauptverfasser: Komkova, Maria A., Eliseev, Artem A., Kasimovskaya, Valeria S., Poyarkov, Andrei A., Eliseev, Andrei A., Karyakin, Arkady A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7535
container_issue 19
container_start_page 7528
container_title Analytical chemistry (Washington)
container_volume 95
creator Komkova, Maria A.
Eliseev, Artem A.
Kasimovskaya, Valeria S.
Poyarkov, Andrei A.
Eliseev, Andrei A.
Karyakin, Arkady A.
description We propose pulse power generation (PPG) amperometry as an advanced readout realized for Prussian blue (PB)-based (bio)­sensors. In contrast to the conventional power generation mode, when the current response is generated upon continuous short-circuiting, the suggested pulse regime is fulfilled by periodic opening and shorting of the circuit. Despite PB being electroactive, the pulse readout is advantageous over conventional steady-state power generation, providing up to a 15-fold increased signal-to-background ratio as well as dramatically improved sensitivity exceeding 10 A·M–1·cm–2 for H2O2 sensors and 3.9 A·M–1·cm–2 for glucose biosensors. Such analytical performance characteristics are, most probably, achieved due to the enrichment of the diffusion layer by analyte mass transfer from the bulk upon opening of the circuit. Due to an improved sensitivity-to-background ratio, reduced flow-rate dependence, and enhanced operational stability, the regime allows reliable monitoring of blood glucose variations through sweat analysis with the on-skin device.
doi_str_mv 10.1021/acs.analchem.2c05746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2808590675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2815599701</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-f178bed8337531c8e625f100955ae1e252eab52d447dbb0d5d0c25c76a695c4b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERZeFf1AhS1zKIduxE-eD27JAqdRCheg5mtgT6iqxg50s6rH_nKx22wOHniyNn_cZyy9jJwJWAqQ4Qx1X6LDTt9SvpAZVZPkLthBKQpKXpXzJFgCQJrIAOGavY7wDEAJE_oodp4WQVSblgj1cT10kfu3_UuDn5CjgaL3jm9vgncd-oOB7GsM9x8jR8bXZotNk-E9C46eRtz7w00_Wf4jkog_xI18PQ2f1XrO7_e6ddVuMdkv8s8WGRor8ah6OPlj3-w07anF-w9vDuWQ3X7_82nxLLn-cX2zWlwmmUo1JK4qyIVOmaaFSoUvKpWoFQKUUkiCpJGGjpMmywjQNGGVAS6WLHPNK6axJl-x07x2C_zNRHOveRk1dh478FGtZQqkqyGf9kr3_D73zU5j_ekcJpaqqADFT2Z7SwccYqK2HYHsM97WAeldRPVdUP1ZUHyqaY-8O8qnpyTyFHjuZAdgDu_jT4med_wCHuaGL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815599701</pqid></control><display><type>article</type><title>Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Komkova, Maria A. ; Eliseev, Artem A. ; Kasimovskaya, Valeria S. ; Poyarkov, Andrei A. ; Eliseev, Andrei A. ; Karyakin, Arkady A.</creator><creatorcontrib>Komkova, Maria A. ; Eliseev, Artem A. ; Kasimovskaya, Valeria S. ; Poyarkov, Andrei A. ; Eliseev, Andrei A. ; Karyakin, Arkady A.</creatorcontrib><description>We propose pulse power generation (PPG) amperometry as an advanced readout realized for Prussian blue (PB)-based (bio)­sensors. In contrast to the conventional power generation mode, when the current response is generated upon continuous short-circuiting, the suggested pulse regime is fulfilled by periodic opening and shorting of the circuit. Despite PB being electroactive, the pulse readout is advantageous over conventional steady-state power generation, providing up to a 15-fold increased signal-to-background ratio as well as dramatically improved sensitivity exceeding 10 A·M–1·cm–2 for H2O2 sensors and 3.9 A·M–1·cm–2 for glucose biosensors. Such analytical performance characteristics are, most probably, achieved due to the enrichment of the diffusion layer by analyte mass transfer from the bulk upon opening of the circuit. Due to an improved sensitivity-to-background ratio, reduced flow-rate dependence, and enhanced operational stability, the regime allows reliable monitoring of blood glucose variations through sweat analysis with the on-skin device.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c05746</identifier><identifier>PMID: 37129422</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Biosensors ; Blood Glucose ; Chemistry ; Circuits ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diffusion layers ; Electric power generation ; Electrical measurement ; Flow stability ; Glucose ; Humans ; Hydrogen Peroxide ; Mass transfer ; Monitoring ; Pigments ; Sensitivity ; Sensors ; State power</subject><ispartof>Analytical chemistry (Washington), 2023-05, Vol.95 (19), p.7528-7535</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society May 16, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a325t-f178bed8337531c8e625f100955ae1e252eab52d447dbb0d5d0c25c76a695c4b3</cites><orcidid>0000-0002-9103-9984 ; 0000-0002-3644-9673 ; 0000-0002-2851-6821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c05746$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c05746$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Komkova, Maria A.</creatorcontrib><creatorcontrib>Eliseev, Artem A.</creatorcontrib><creatorcontrib>Kasimovskaya, Valeria S.</creatorcontrib><creatorcontrib>Poyarkov, Andrei A.</creatorcontrib><creatorcontrib>Eliseev, Andrei A.</creatorcontrib><creatorcontrib>Karyakin, Arkady A.</creatorcontrib><title>Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We propose pulse power generation (PPG) amperometry as an advanced readout realized for Prussian blue (PB)-based (bio)­sensors. In contrast to the conventional power generation mode, when the current response is generated upon continuous short-circuiting, the suggested pulse regime is fulfilled by periodic opening and shorting of the circuit. Despite PB being electroactive, the pulse readout is advantageous over conventional steady-state power generation, providing up to a 15-fold increased signal-to-background ratio as well as dramatically improved sensitivity exceeding 10 A·M–1·cm–2 for H2O2 sensors and 3.9 A·M–1·cm–2 for glucose biosensors. Such analytical performance characteristics are, most probably, achieved due to the enrichment of the diffusion layer by analyte mass transfer from the bulk upon opening of the circuit. Due to an improved sensitivity-to-background ratio, reduced flow-rate dependence, and enhanced operational stability, the regime allows reliable monitoring of blood glucose variations through sweat analysis with the on-skin device.</description><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Blood Glucose</subject><subject>Chemistry</subject><subject>Circuits</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diffusion layers</subject><subject>Electric power generation</subject><subject>Electrical measurement</subject><subject>Flow stability</subject><subject>Glucose</subject><subject>Humans</subject><subject>Hydrogen Peroxide</subject><subject>Mass transfer</subject><subject>Monitoring</subject><subject>Pigments</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>State power</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi1ERZeFf1AhS1zKIduxE-eD27JAqdRCheg5mtgT6iqxg50s6rH_nKx22wOHniyNn_cZyy9jJwJWAqQ4Qx1X6LDTt9SvpAZVZPkLthBKQpKXpXzJFgCQJrIAOGavY7wDEAJE_oodp4WQVSblgj1cT10kfu3_UuDn5CjgaL3jm9vgncd-oOB7GsM9x8jR8bXZotNk-E9C46eRtz7w00_Wf4jkog_xI18PQ2f1XrO7_e6ddVuMdkv8s8WGRor8ah6OPlj3-w07anF-w9vDuWQ3X7_82nxLLn-cX2zWlwmmUo1JK4qyIVOmaaFSoUvKpWoFQKUUkiCpJGGjpMmywjQNGGVAS6WLHPNK6axJl-x07x2C_zNRHOveRk1dh478FGtZQqkqyGf9kr3_D73zU5j_ekcJpaqqADFT2Z7SwccYqK2HYHsM97WAeldRPVdUP1ZUHyqaY-8O8qnpyTyFHjuZAdgDu_jT4med_wCHuaGL</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Komkova, Maria A.</creator><creator>Eliseev, Artem A.</creator><creator>Kasimovskaya, Valeria S.</creator><creator>Poyarkov, Andrei A.</creator><creator>Eliseev, Andrei A.</creator><creator>Karyakin, Arkady A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9103-9984</orcidid><orcidid>https://orcid.org/0000-0002-3644-9673</orcidid><orcidid>https://orcid.org/0000-0002-2851-6821</orcidid></search><sort><creationdate>20230516</creationdate><title>Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring</title><author>Komkova, Maria A. ; Eliseev, Artem A. ; Kasimovskaya, Valeria S. ; Poyarkov, Andrei A. ; Eliseev, Andrei A. ; Karyakin, Arkady A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-f178bed8337531c8e625f100955ae1e252eab52d447dbb0d5d0c25c76a695c4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Blood Glucose</topic><topic>Chemistry</topic><topic>Circuits</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diffusion layers</topic><topic>Electric power generation</topic><topic>Electrical measurement</topic><topic>Flow stability</topic><topic>Glucose</topic><topic>Humans</topic><topic>Hydrogen Peroxide</topic><topic>Mass transfer</topic><topic>Monitoring</topic><topic>Pigments</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>State power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komkova, Maria A.</creatorcontrib><creatorcontrib>Eliseev, Artem A.</creatorcontrib><creatorcontrib>Kasimovskaya, Valeria S.</creatorcontrib><creatorcontrib>Poyarkov, Andrei A.</creatorcontrib><creatorcontrib>Eliseev, Andrei A.</creatorcontrib><creatorcontrib>Karyakin, Arkady A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komkova, Maria A.</au><au>Eliseev, Artem A.</au><au>Kasimovskaya, Valeria S.</au><au>Poyarkov, Andrei A.</au><au>Eliseev, Andrei A.</au><au>Karyakin, Arkady A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>95</volume><issue>19</issue><spage>7528</spage><epage>7535</epage><pages>7528-7535</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We propose pulse power generation (PPG) amperometry as an advanced readout realized for Prussian blue (PB)-based (bio)­sensors. In contrast to the conventional power generation mode, when the current response is generated upon continuous short-circuiting, the suggested pulse regime is fulfilled by periodic opening and shorting of the circuit. Despite PB being electroactive, the pulse readout is advantageous over conventional steady-state power generation, providing up to a 15-fold increased signal-to-background ratio as well as dramatically improved sensitivity exceeding 10 A·M–1·cm–2 for H2O2 sensors and 3.9 A·M–1·cm–2 for glucose biosensors. Such analytical performance characteristics are, most probably, achieved due to the enrichment of the diffusion layer by analyte mass transfer from the bulk upon opening of the circuit. Due to an improved sensitivity-to-background ratio, reduced flow-rate dependence, and enhanced operational stability, the regime allows reliable monitoring of blood glucose variations through sweat analysis with the on-skin device.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37129422</pmid><doi>10.1021/acs.analchem.2c05746</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9103-9984</orcidid><orcidid>https://orcid.org/0000-0002-3644-9673</orcidid><orcidid>https://orcid.org/0000-0002-2851-6821</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-05, Vol.95 (19), p.7528-7535
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2808590675
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques
Biosensors
Blood Glucose
Chemistry
Circuits
Diabetes mellitus
Diabetes Mellitus - diagnosis
Diffusion layers
Electric power generation
Electrical measurement
Flow stability
Glucose
Humans
Hydrogen Peroxide
Mass transfer
Monitoring
Pigments
Sensitivity
Sensors
State power
title Pulse Power Generation Chronoamperometry as an Advanced Readout for (Bio)sensors: Application for Noninvasive Diabetes Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulse%20Power%20Generation%20Chronoamperometry%20as%20an%20Advanced%20Readout%20for%20(Bio)sensors:%20Application%20for%20Noninvasive%20Diabetes%20Monitoring&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Komkova,%20Maria%20A.&rft.date=2023-05-16&rft.volume=95&rft.issue=19&rft.spage=7528&rft.epage=7535&rft.pages=7528-7535&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c05746&rft_dat=%3Cproquest_cross%3E2815599701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815599701&rft_id=info:pmid/37129422&rfr_iscdi=true