A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde

We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nucle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-05, Vol.127 (18), p.4152-4165
Hauptverfasser: Suzuki, Kazuma, Kanno, Manabu, Koseki, Shiro, Kono, Hirohiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4165
container_issue 18
container_start_page 4152
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 127
creator Suzuki, Kazuma
Kanno, Manabu
Koseki, Shiro
Kono, Hirohiko
description We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the “pseudo-lattice points” at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm–1 with only 875 SBGs at the MP2/6-31G­(d,p) level of theory, in good agreement with 25 cm–1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40–45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.
doi_str_mv 10.1021/acs.jpca.2c09088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2808590608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2808590608</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-68ba3230b1b4d2a8c003dade43aa93c448c5773e63f58e640972b47fe3ec1b523</originalsourceid><addsrcrecordid>eNp1kEtv1TAQhS1ERR-wZ4W8ZEFu_Uwcdpe2tEhFCCjraOJMSirHTu1Y6l33j5P7gB2rORp95yw-Qt5ytuJM8HOwafUwWVgJy2pmzAtywrVghRZcv1wyM3WhS1kfk9OUHhhjXAr1ihzLiotaKX5Cntf05xyznXPE4hMk7Og15JQG8PTqaQKfhuBpHyL9nsHPeaQ_EOy8fV5uPIyDTXTw9GtwaLPD9JGup8kNFnbIHOjNpovhHj29y96jG_z9jgcXPLgOf286fE2OenAJ3xzuGfn1-eru4qa4_Xb95WJ9W4DUei5K04IUkrW8VZ0AYxmTHXSoJEAtrVLG6qqSWMpeGywVqyvRqqpHiZa3Wsgz8n6_O8XwmDHNzTgki86Bx5BTIwwzumYlMwvK9qiNIaWIfTPFYYS4aThrtuqbRX2zVd8c1C-Vd4f13I7Y_Sv8db0AH_bArhpyXASk_-_9AdY9kZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808590608</pqid></control><display><type>article</type><title>A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde</title><source>American Chemical Society Journals</source><creator>Suzuki, Kazuma ; Kanno, Manabu ; Koseki, Shiro ; Kono, Hirohiko</creator><creatorcontrib>Suzuki, Kazuma ; Kanno, Manabu ; Koseki, Shiro ; Kono, Hirohiko</creatorcontrib><description>We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the “pseudo-lattice points” at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm–1 with only 875 SBGs at the MP2/6-31G­(d,p) level of theory, in good agreement with 25 cm–1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40–45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.2c09088</identifier><identifier>PMID: 37129441</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: New Tools and Methods in Experiment and Theory</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2023-05, Vol.127 (18), p.4152-4165</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a355t-68ba3230b1b4d2a8c003dade43aa93c448c5773e63f58e640972b47fe3ec1b523</cites><orcidid>0000-0003-4701-906X ; 0000-0002-3283-1867 ; 0000-0003-1208-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c09088$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.2c09088$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37129441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suzuki, Kazuma</creatorcontrib><creatorcontrib>Kanno, Manabu</creatorcontrib><creatorcontrib>Koseki, Shiro</creatorcontrib><creatorcontrib>Kono, Hirohiko</creatorcontrib><title>A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the “pseudo-lattice points” at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm–1 with only 875 SBGs at the MP2/6-31G­(d,p) level of theory, in good agreement with 25 cm–1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40–45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.</description><subject>A: New Tools and Methods in Experiment and Theory</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEtv1TAQhS1ERR-wZ4W8ZEFu_Uwcdpe2tEhFCCjraOJMSirHTu1Y6l33j5P7gB2rORp95yw-Qt5ytuJM8HOwafUwWVgJy2pmzAtywrVghRZcv1wyM3WhS1kfk9OUHhhjXAr1ihzLiotaKX5Cntf05xyznXPE4hMk7Og15JQG8PTqaQKfhuBpHyL9nsHPeaQ_EOy8fV5uPIyDTXTw9GtwaLPD9JGup8kNFnbIHOjNpovhHj29y96jG_z9jgcXPLgOf286fE2OenAJ3xzuGfn1-eru4qa4_Xb95WJ9W4DUei5K04IUkrW8VZ0AYxmTHXSoJEAtrVLG6qqSWMpeGywVqyvRqqpHiZa3Wsgz8n6_O8XwmDHNzTgki86Bx5BTIwwzumYlMwvK9qiNIaWIfTPFYYS4aThrtuqbRX2zVd8c1C-Vd4f13I7Y_Sv8db0AH_bArhpyXASk_-_9AdY9kZo</recordid><startdate>20230511</startdate><enddate>20230511</enddate><creator>Suzuki, Kazuma</creator><creator>Kanno, Manabu</creator><creator>Koseki, Shiro</creator><creator>Kono, Hirohiko</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4701-906X</orcidid><orcidid>https://orcid.org/0000-0002-3283-1867</orcidid><orcidid>https://orcid.org/0000-0003-1208-4574</orcidid></search><sort><creationdate>20230511</creationdate><title>A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde</title><author>Suzuki, Kazuma ; Kanno, Manabu ; Koseki, Shiro ; Kono, Hirohiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-68ba3230b1b4d2a8c003dade43aa93c448c5773e63f58e640972b47fe3ec1b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A: New Tools and Methods in Experiment and Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Kazuma</creatorcontrib><creatorcontrib>Kanno, Manabu</creatorcontrib><creatorcontrib>Koseki, Shiro</creatorcontrib><creatorcontrib>Kono, Hirohiko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzuki, Kazuma</au><au>Kanno, Manabu</au><au>Koseki, Shiro</au><au>Kono, Hirohiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2023-05-11</date><risdate>2023</risdate><volume>127</volume><issue>18</issue><spage>4152</spage><epage>4165</epage><pages>4152-4165</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the “pseudo-lattice points” at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states. We then applied it to hydrogen tunneling in malonaldehyde and achieved a tunneling splitting of 27.1 cm–1 with only 875 SBGs at the MP2/6-31G­(d,p) level of theory, in good agreement with 25 cm–1 by the more elaborate multiconfiguration time-dependent Hartree method. Reasonable results were also obtained for singly and doubly deuterated malonaldehyde. We analyzed the tunneling states by utilizing expansion coefficients of individual SBGs and found that 40–45% of the SBGs in Ψ are nonplanar structures and SBGs away from the IRC contribute a little to hydrogen transfer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37129441</pmid><doi>10.1021/acs.jpca.2c09088</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4701-906X</orcidid><orcidid>https://orcid.org/0000-0002-3283-1867</orcidid><orcidid>https://orcid.org/0000-0003-1208-4574</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-05, Vol.127 (18), p.4152-4165
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_2808590608
source American Chemical Society Journals
subjects A: New Tools and Methods in Experiment and Theory
title A Structure-Based Gaussian Expansion for Quantum Reaction Dynamics in Molecules: Application to Hydrogen Tunneling in Malonaldehyde
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Structure-Based%20Gaussian%20Expansion%20for%20Quantum%20Reaction%20Dynamics%20in%20Molecules:%20Application%20to%20Hydrogen%20Tunneling%20in%20Malonaldehyde&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Suzuki,%20Kazuma&rft.date=2023-05-11&rft.volume=127&rft.issue=18&rft.spage=4152&rft.epage=4165&rft.pages=4152-4165&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.2c09088&rft_dat=%3Cproquest_cross%3E2808590608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808590608&rft_id=info:pmid/37129441&rfr_iscdi=true