Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere

In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. E. Planets 2004-06, Vol.109 (E6), p.E06002.1-n/a
Hauptverfasser: Wilson, E. H., Atreya, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue E6
container_start_page E06002.1
container_title Journal of Geophysical Research. E. Planets
container_volume 109
creator Wilson, E. H.
Atreya, S. K.
description In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two‐stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron‐impact, cosmic‐ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm−3 is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini‐Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.
doi_str_mv 10.1029/2003JE002181
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28084529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17853147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5108-c09d01f589f06024633752415dcc7401f4c5be95863df8c05d6b6f40e7d467013</originalsourceid><addsrcrecordid>eNqFkcuOEzEQRS0EEtEwOz7AG2BDQ_ntXqIoZBgGECjA0vL4QRr6he0W5O9xlAhYQW1KpTr3qnQLoYcEnhGg7XMKwK43AJRocgetKBGyoRToXbQCwnUDlKr76DLnr1CLC8mBrJBfLymFseBcbAl4iniYfOi78Qsu-4Dn_VQmtw9Dl0s6HNe7rtjxScbDUhbb9wfswxxGf7SwZZjyvA8pYDt63E3jeXyA7kXb53B57hfo48vNbn3V3Lzbvlq_uGmcIKAbB60HEoVuI0igXDKmBOVEeOdUvTZyJ25DK7RkPmoHwstbGTkE5blUQNgFenzyndP0fQm5mHq3C31vxzAt2VANmgva_hckSgtGuKrg0xPo0pRzCtHMqRtsOhgC5hi7-Tv2ij86-9rsbB-THV2X_2hEK9uWsMrRE_ej68Phn57mevthQ1Srq6g5ieovws_fIpu-GalqUubz261hrz9d8Tc7MO_ZL_5znw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17853147</pqid></control><display><type>article</type><title>Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Wilson, E. H. ; Atreya, S. K.</creator><creatorcontrib>Wilson, E. H. ; Atreya, S. K.</creatorcontrib><description>In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two‐stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron‐impact, cosmic‐ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm−3 is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini‐Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2003JE002181</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>composition ; Earth, ocean, space ; Exact sciences and technology ; haze ; ion chemistry ; photochemistry ; planetary atmospheres ; Titan</subject><ispartof>Journal of Geophysical Research. E. Planets, 2004-06, Vol.109 (E6), p.E06002.1-n/a</ispartof><rights>Copyright 2004 by the American Geophysical Union.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5108-c09d01f589f06024633752415dcc7401f4c5be95863df8c05d6b6f40e7d467013</citedby><cites>FETCH-LOGICAL-c5108-c09d01f589f06024633752415dcc7401f4c5be95863df8c05d6b6f40e7d467013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2003JE002181$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2003JE002181$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15969913$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, E. H.</creatorcontrib><creatorcontrib>Atreya, S. K.</creatorcontrib><title>Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere</title><title>Journal of Geophysical Research. E. Planets</title><addtitle>J. Geophys. Res</addtitle><description>In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two‐stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron‐impact, cosmic‐ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm−3 is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini‐Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.</description><subject>composition</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>haze</subject><subject>ion chemistry</subject><subject>photochemistry</subject><subject>planetary atmospheres</subject><subject>Titan</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkcuOEzEQRS0EEtEwOz7AG2BDQ_ntXqIoZBgGECjA0vL4QRr6he0W5O9xlAhYQW1KpTr3qnQLoYcEnhGg7XMKwK43AJRocgetKBGyoRToXbQCwnUDlKr76DLnr1CLC8mBrJBfLymFseBcbAl4iniYfOi78Qsu-4Dn_VQmtw9Dl0s6HNe7rtjxScbDUhbb9wfswxxGf7SwZZjyvA8pYDt63E3jeXyA7kXb53B57hfo48vNbn3V3Lzbvlq_uGmcIKAbB60HEoVuI0igXDKmBOVEeOdUvTZyJ25DK7RkPmoHwstbGTkE5blUQNgFenzyndP0fQm5mHq3C31vxzAt2VANmgva_hckSgtGuKrg0xPo0pRzCtHMqRtsOhgC5hi7-Tv2ij86-9rsbB-THV2X_2hEK9uWsMrRE_ej68Phn57mevthQ1Srq6g5ieovws_fIpu-GalqUubz261hrz9d8Tc7MO_ZL_5znw0</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Wilson, E. H.</creator><creator>Atreya, S. K.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>200406</creationdate><title>Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere</title><author>Wilson, E. H. ; Atreya, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5108-c09d01f589f06024633752415dcc7401f4c5be95863df8c05d6b6f40e7d467013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>composition</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>haze</topic><topic>ion chemistry</topic><topic>photochemistry</topic><topic>planetary atmospheres</topic><topic>Titan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, E. H.</creatorcontrib><creatorcontrib>Atreya, S. K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research. E. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, E. H.</au><au>Atreya, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere</atitle><jtitle>Journal of Geophysical Research. E. Planets</jtitle><addtitle>J. Geophys. Res</addtitle><date>2004-06</date><risdate>2004</risdate><volume>109</volume><issue>E6</issue><spage>E06002.1</spage><epage>n/a</epage><pages>E06002.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>In the context of recent observations, microphysical models, and laboratory data, a photochemical model of Titan's atmosphere, including updated chemistry focusing on rate coefficients and cross sections measured under appropriate conditions, has been developed to increase understanding of these processes and improve upon previous Titan photochemical models. The model employs a two‐stream discrete ordinates method to characterize the transfer of solar radiation, and the effects of electron‐impact, cosmic‐ray deposition, and aerosol opacities from fractal and Mie particles are analyzed. Sensitivity studies demonstrate that an eddy diffusion profile with a homopause level of 850 km and a methane stratospheric mole fraction of 2.2% provides the best fit of stratospheric and upper atmosphere observations and an improved fit over previous Titan photochemical models. Lack of fits for C3H8, HC3N, and possibly C2H3CN can be resolved with adjustments in aerosol opacity. The model presents a benzene profile consistent with its detection in Titan's stratosphere [Coustenis et al., 2003], which may play an important role in the formation of Titan hazes. An electron peak concentration of 4200 cm−3 is calculated, which exceeds observations by 20%, considerably lower than previous ionosphere models. With adjustments in aerosol opacities and surface fluxes the model illustrates that reasonable fits to existing observations are possible with a single eddy diffusion profile, contrary to the conclusions of previous Titan models. These results will aid in the receipt and interpretation of data from Cassini‐Huygens, which will arrive at Titan in 2004 and deploy a probe into Titan's atmosphere in January 2005.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2003JE002181</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. E. Planets, 2004-06, Vol.109 (E6), p.E06002.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28084529
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects composition
Earth, ocean, space
Exact sciences and technology
haze
ion chemistry
photochemistry
planetary atmospheres
Titan
title Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20state%20of%20modeling%20the%20photochemistry%20of%20Titan's%20mutually%20dependent%20atmosphere%20and%20ionosphere&rft.jtitle=Journal%20of%20Geophysical%20Research.%20E.%20Planets&rft.au=Wilson,%20E.%20H.&rft.date=2004-06&rft.volume=109&rft.issue=E6&rft.spage=E06002.1&rft.epage=n/a&rft.pages=E06002.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2003JE002181&rft_dat=%3Cproquest_cross%3E17853147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17853147&rft_id=info:pmid/&rfr_iscdi=true